




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
貴州省遵義市鳳岡縣二中2024屆高一上數(shù)學期末教學質(zhì)量檢測試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知實數(shù)a、b,滿足,,則關于a、b下列判斷正確的是()A.a<b<2 B.b<a<2C.2<a<b D.2<b<a2.一個三棱錐的三視圖如右圖所示,則這個三棱錐的表面積為()A. B.C. D.3.過點且與直線垂直的直線方程為A. B.C. D.4.函數(shù),則A. B.4C. D.85.已知正方體ABCD-ABCD中,E、F分別為BB、CC的中點,那么異面直線AE與DF所成角的余弦值為A. B.C. D.6.已知全集,集合,則()A. B.C. D.7.已知函數(shù),對于任意,且,均存在唯一實數(shù),使得,且,若關于的方程有4個不相等的實數(shù)根,則的取值范圍是A. B.C. D.8.設函數(shù),若是奇函數(shù),則的值是()A.2 B.C.4 D.9.函數(shù),其部分圖象如圖所示,則()A. B.C. D.10.已知函數(shù)在上是增函數(shù),則的取值范圍是()A., B.,C., D.,二、填空題:本大題共6小題,每小題5分,共30分。11.已知命題:,都有是真命題,則實數(shù)取值范圍是______12.函數(shù)定義域為___________13.若關于的不等式的解集為,則實數(shù)__________14.設函數(shù),則____________15.如圖,單位圓上有一點,點P以點P0為起點按逆時針方向以每秒弧度作圓周運動,5秒后點P的縱坐標y是_____________.16.現(xiàn)采用隨機模擬的方法估計某運動員射擊4次,至少擊中3次的概率:先由計算器給出0到9之間取整數(shù)值的隨機數(shù),指定0,1表示沒有擊中目標,2,3,4,5,6,7,8,9表示擊中目標,以4個隨機數(shù)為一組,代表射擊4次的結(jié)果,經(jīng)隨機模擬產(chǎn)生了20組隨機數(shù):75270293714098570347437386366947141746980371623326168045601136619597742476104281根據(jù)以上數(shù)據(jù)估計該射擊運動員射擊4次至少擊中3次的概率為__________三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.如圖,△ABC中,AB=8,BC=10,AC=6,DB⊥平面ABC,且AE∥FC∥BD,BD=3,F(xiàn)C=4,AE=5,求此幾何體的體積18.(1)當取什么值時,不等式對一切實數(shù)都成立?(2)解關于的方程:.19.已知函數(shù),(,且)(1)求函數(shù)的定義域;(2)當時,求關于的不等式的解集20.如圖,直角梯形ABCD中,AB⊥AD,AD∥BC,AD=6,BC=2AB=4,點E為線段BC的中點,點F在線段AD上,且EF∥AB,現(xiàn)將四邊形ABCD沿EF折起,使平面ABEF⊥平面EFDC,點P為幾何體中線段AD的中點(Ⅰ)證明:平面ACD⊥平面ACF;(Ⅱ)證明:CD∥平面BPE21.函數(shù)的一段圖象如圖所示.(1)求函數(shù)的解析式;(2)將函數(shù)圖象向右平移個單位,得函數(shù)的圖象,求在的單調(diào)增區(qū)間
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解題分析】先根據(jù)判斷a接近2,進一步對a進行放縮,,進而通過對數(shù)運算性質(zhì)和基本不等式可以判斷a>2;根據(jù)b的結(jié)構(gòu),構(gòu)造函數(shù),得出函數(shù)的單調(diào)性和零點,進而得到a,b的大小關系,最后再判斷b和2的大小關系,最終得到答案.【題目詳解】.構(gòu)造函數(shù):,易知函數(shù)是R上的減函數(shù),且,由,可知:,又,∴,則a>b.又∵,∴a>b>2故選:D.【題目點撥】對數(shù)函數(shù)式比較大小通常借助中間量,除了0和1之外,其它的中間量需要根據(jù)題目進行分析,中間會用到指對數(shù)的運算性質(zhì)和放縮法;另外,構(gòu)造函數(shù)利用函數(shù)的單調(diào)性比較大小是比較常用的一種方法,需要我們對式子的結(jié)構(gòu)進行仔細分析,平常注意歸納總結(jié).2、B【解題分析】由三視圖可畫出該三棱錐的直觀圖,如圖,圖中正四棱柱的底面邊長為,高為,棱錐的四個面有三個為直角三角形,一個為腰長為,底長的等腰三角形,其面積分別為:,所以三棱錐的表面積為,故選B.3、D【解題分析】所求直線的斜率為,故所求直線的方程為,整理得,選D.4、D【解題分析】因為函數(shù),所以,,故選D.【思路點睛】本題主要考查分段函數(shù)的解析式、指數(shù)與對數(shù)的運算,屬于中檔題.對于分段函數(shù)解析式的考查是命題的動向之一,這類問題的特點是綜合性強,對抽象思維能力要求高,因此解決這類題一定要層次清楚,思路清晰.本題解答分兩個層次:首先求出的值,進而得到的值.5、C【解題分析】連接DF,因為DF與AE平行,所以∠DFD即為異面直線AE與DF所成角的平面角,設正方體的棱長為2,則FD=FD=,由余弦定理得cos∠DFD==.6、B【解題分析】首先確定全集,而后由補集定義可得結(jié)果【題目詳解】解:,又,.故選B【題目點撥】本題考查了集合的補集,熟練掌握補集的定義是解決本題的關鍵,屬于基礎題型.7、A【解題分析】解:由題意可知f(x)在[0,+∞)上單調(diào)遞增,值域為[m,+∞),∵對于任意s∈R,且s≠0,均存在唯一實數(shù)t,使得f(s)=f(t),且s≠t,∴f(x)在(﹣∞,0)上是減函數(shù),值域為(m,+∞),∴a<0,且﹣b+1=m,即b=1﹣m∵|f(x)|=f()有4個不相等的實數(shù)根,∴0<f()<﹣m,又m<﹣1,∴0m,即0<(1)m<﹣m,∴﹣4<a<﹣2,∴則a的取值范圍是(﹣4,﹣2),故選A點睛:本題中涉及根據(jù)函數(shù)零點求參數(shù)取值,是高考經(jīng)常涉及的重點問題,(1)利用零點存在的判定定理構(gòu)建不等式求解;(2)分離參數(shù)后轉(zhuǎn)化為函數(shù)的值域(最值)問題求解,如果涉及由幾個零點時,還需考慮函數(shù)的圖象與參數(shù)的交點個數(shù);(3)轉(zhuǎn)化為兩熟悉的函數(shù)圖象的上、下關系問題,從而構(gòu)建不等式求解.8、D【解題分析】根據(jù)為奇函數(shù),可求得,代入可得答案.【題目詳解】若是奇函數(shù),則,所以,,.故選:D.9、C【解題分析】利用圖象求出函數(shù)的解析式,即可求得的值.【題目詳解】由圖可知,,函數(shù)的最小正周期為,則,所以,,由圖可得,因為函數(shù)在附近單調(diào)遞增,故,則,,故,所以,,因此,.故選:C.10、D【解題分析】先根據(jù)題意建立不等式組,再求解出,最后給出選項即可.【題目詳解】解:因為函數(shù)在上是增函數(shù),所以,解得,則故選:D.【題目點撥】本題考查利用分段函數(shù)的單調(diào)性求參數(shù)范圍,是基礎題二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】由于,都有,所以,從而可求出實數(shù)的取值范圍【題目詳解】解:因為命題:,都有是真命題,所以,即,解得,所以實數(shù)的取值范圍為,故答案為:12、[0,1)【解題分析】要使函數(shù)有意義,需滿足,函數(shù)定義域為[0,1)考點:函數(shù)定義域13、【解題分析】先由不等式的解得到對應方程的根,再利用韋達定理,結(jié)合解得參數(shù)a即可.【題目詳解】關于的不等式的解集為,則方程的兩根為,則,則由,得,即,故.故答案為:.14、2【解題分析】利用分段函數(shù)由里及外逐步求解函數(shù)的值即可.【題目詳解】解:由已知,所以,故答案為:.【題目點撥】本題考查分段函數(shù)的應用,函數(shù)值的求法,考查計算能力.15、##【解題分析】根據(jù)單位圓上點的坐標求出,從而求出,從而求出點P的縱坐標.【題目詳解】因為位于第一象限,且,故,所以,故,所以點P的縱坐標故答案為:16、【解題分析】根據(jù)數(shù)據(jù)統(tǒng)計擊中目標的次數(shù),再用古典概型概率公式求解.【題目詳解】由數(shù)據(jù)得射擊4次至少擊中3次的次數(shù)有15,所以射擊4次至少擊中3次的概率為.故答案為:【題目點撥】本題考查古典概型概率公式,考查基本分析求解能力,屬基礎題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、96【解題分析】,取CM=AN=BD,連接DM,MN,DN,用“分割法”把原幾何體分割成一個直三棱柱和一個四棱錐.所以V幾何體=V三棱柱+V四棱錐試題解析:如圖,取CM=AN=BD,連接DM,MN,DN,用“分割法”把原幾何體分割成一個直三棱柱和一個四棱錐.所以V幾何體=V三棱柱+V四棱錐.由題知三棱柱ABC-NDM的體積為V1=×8×6×3=72.四棱錐D-MNEF體積為V2=S梯形MNEF·DN=××(1+2)×6×8=24,則幾何體的體積為V=V1+V2=72+24=96.點睛:空間幾何體體積問題的常見類型及解題策略(1)若所給定的幾何體是可直接用公式求解的柱體、錐體或臺體,則可直接利用公式進行求解(2)若所給定的幾何體的體積不能直接利用公式得出,則常用轉(zhuǎn)換法、分割法、補形法等方法進行求解(3)若以三視圖的形式給出幾何體,則應先根據(jù)三視圖得到幾何體的直觀圖,然后根據(jù)條件求解18、(1);(2).【解題分析】(1)分,兩種情況討論,利用判別式控制,即得解;(2)利用對數(shù)的定義,求解即可【題目詳解】(1)當時,,明顯滿足條件.當時,由“不等式對一切實數(shù)都成立”可知且解得綜上可得(2)由對數(shù)定義可得:所以所以所以19、(1)(2)【解題分析】(1)求使函數(shù)有意義的的范圍即可;(2)根據(jù)函數(shù)的單調(diào)性解不等式組可得答案.【小問1詳解】由題意可得,解得,故函數(shù)的定義域為【小問2詳解】當時,函數(shù)是增函數(shù),因為,所以,解得故原不等式的解集為20、證明過程詳見解析【解題分析】(Ⅰ)證明AF⊥平面EFDC,得出AF⊥CD;再由勾股定理證明FC⊥CD,即可證明CD⊥平面ACF,平面ACD⊥平面ACF;(Ⅱ)取DF的中點Q,連接QE、QP,證明BPQE四點共面,再證明CD∥EQ,從而證明CD∥平面EBPQ,即為CD∥平面BPE【題目詳解】(Ⅰ)由題意知,四邊形ABEF是正方形,∴AF⊥EF,又平面ABEF⊥平面EFDC,∴AF⊥平面EFDC,∴AF⊥CD;又FD=4,F(xiàn)C=AB=2,CD=AB=2,∴FD2=FC2+CD2,∴FC⊥CD;又FC∩AF=F,∴CD⊥平面ACF;又CD?平面ACD,∴平面ACD⊥平面ACF;(Ⅱ)如圖所示,取DF的中點Q,連接QE、QP,則QP∥AF,又AF∥BE,∴PQ∥BF,∴BPQE四點共面;又EC=2,QD=DF=2,且DF∥EC,∴QD與EC平行且相等,∴QECD為平行四邊形,∴CD∥EQ,又EQ?平面EBPQ,CD?平面EBPQ,∴CD∥平面EBPQ,即CD∥平面BPE【題目點撥】本題主要考查直線和平面平行與垂直的判定應用問題,也考查了平面與平面的垂直應用問題,是中檔題21、(1);(2)【解題分析】(1)由函數(shù)的圖象的頂點坐標求出A,由周期求出ω,由五點法作圖求出φ的值,可
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 廣州國際旅游服務合同樣本
- 商鋪租賃合同樣本:門面租賃全新范本
- 寒假臨時工雇傭合同書樣本
- 游戲品牌代言合同樣本
- 長租公寓租賃合同全文
- 新媒體廣告推廣合同模板
- 辦公室簡單裝修合同范本
- 個人貸款合同電子版模板
- 企業(yè)間的戰(zhàn)略合作框架合同范本
- 課件人物插圖小學生
- 工程設計項目擬投入設計人員及設備
- 人教版五年級數(shù)學下冊課后作業(yè)設計 2.4質(zhì)數(shù)和合數(shù)(解析版)
- 高??蒲泄芾韻徝嬖噯栴}及回答
- 小學體質(zhì)測試標準
- 機床安全操作培訓課件
- 自動化電氣控制方案
- 臍疝護理查房課件
- XX學校學校集體備課實施方案細則、方案、計劃、制度、總結(jié)(全套資料)
- 人工智能的數(shù)學基礎
- 開展去向不明人員專項工作方案
- 無人機項目商業(yè)計劃書
評論
0/150
提交評論