


下載本文檔
版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
一種顧及多特征的建筑物變化檢測(cè)方法AbstractAsthedemandforbuildingmonitoringandassessmentincreases,thedetectionofbuildingchangeshasbecomeacrucialtask.Traditionalmethodsforbuildingchangedetectiontypicallyfocusonidentifyingdifferencesbetweentwoimagesofthesameareacapturedatdifferenttimes.However,thereareseveralchallengesassociatedwiththisapproach,asitcanbedifficulttodeterminewhatchangestoconsiderandhowtoclassifythem.Inthispaper,weproposeanewapproachtobuildingchangedetectionthattakesintoaccountmultiplefeaturesandcharacteristicsofthebuildinganditssurroundings.Ourapproachincludestheuseofhigh-resolutionsatelliteimages,lidardata,andgeographicinformation,andemploysmachinelearningalgorithmstoanalyzethesedata.WevalidateourapproachbyapplyingittoacasestudyofaresidentialareainHongKong,anddemonstratethatitcansuccessfullydetectbothsubtleandsignificantchangesinbuildingswhilemitigatingfalsepositives.IntroductionThedetectionofbuildingchangeshassubstantialimportanceforurbanplanning,disasterresponse,andenvironmentalmonitoring.Thetraditionalmethodsofbuildingchangedetectionrelyoncomparingtwoimagesofthesameareacapturedatdifferenttimes,andidentifyingdifferencesbetweenthem.Thesemethodsprovidesomeinsightregardingthespatialextentandnatureofthedetectedchanges.However,thesemethodstendtoproducelargenumbersoffalsepositivesandfalsenegatives,primarilybecausetheyfocusonthepreciselocalizationofchangeratherthanonitscharacterization.Moreover,buildingshavecomplexgeometriesandmaterialsthatposesignificantchallengestoimageanalysis.Therefore,itisessentialtodevelopamorerobustandcomprehensiveapproachtobuildingchangedetection.Theproposedapproachinvolvestakingintoaccountmultiplefeaturesandcharacteristicsofthebuildinganditssurroundings.Thisapproachisachievedthroughtheintegrationofhigh-resolutionsatelliteimages,lidardata,andgeographicinformationthatprovideacomprehensiveunderstandingofthebuilding.Moreover,throughtheuseofmachinelearningalgorithms,theapproachleveragesthecomputationalpowertoanalyzethesedatasetsanddetectbuildingchanges.Theobjectiveofthisworkistoprovideanewapproachforbuildingchangedetectionthatbettercharacterizesthechangeswhilereducingfalsepositives.MethodologyTheproposedapproachcombinesmultipledatasetsthatincludesatelliteimages,lidardata,andgeographicinformation.Thesatelliteimagesprovidethevisualrepresentationofthechangesthathaveoccurredinthebuilding.Thelidardataprovidesthethree-dimensionalrepresentationofthebuildinganditssurroundingarea,furtherimprovingtheaccuracyofthedetectedchanges.Geographicinformationincludesinformationaboutthebuildinglocation,land-use,historicalandenvironmentalconsiderations.Theapproachincorporatestwostagesofprocessing.Thefirststagefocusesondatapreparation,includingimagecalibration,radiometricnormalization,imageregistration,andsegmentation.Inthesecondstage,machinelearningalgorithmsareappliedtodifferentsetsoffeaturesthatincludespectral,textural,andgeometricinformationtodetectthechangesinthebuilding.Acriticalfeatureusedinthemachinelearningmodelsistheuseofunsupervisedlearningalgorithmsthatallowforthedetectionofsubtlechangesthatmaynotbeidentifiedbytraditionalmethods.Themodelsaretrainedandtestedonasub-regionofthestudyarea,andcomparedwithtraditionalchangedetectionmethodsbasedonimagedifferencing.ResultsandDiscussionTheperformanceoftheproposedapproachisevaluatedonacasestudyofaresidentialareainHongKong.Theapproachdetectedchangesinthebuildings,includingroofchanges,newconstructions,andalterationsinbuildingshapes.Theaccuracyofthemethodwasevaluatedusingground-truthdatacollectedfromthefieldsurvey.Theresultsshowedthattheproposedmethodhashigheraccuracyindetectingbuildingchangescomparedtotraditionalchangedetectionmethods.Inparticular,ithasahigherabilitytodetectsubtlechanges,mitigatingfalsepositivesresultingfromshadows,andseasonalvariations.Theproposedmethod,therefore,providesarobusttoolforbuildingchangedetection.ConclusionTheproposedapproachforbuildingchangedetectionprovidesnewinsightsandmethodsforurbanplanning,disasterresponse,andenvironmentalmonitoring.Themethoddemonstratedinthisworkintegratesmultiplefeaturesandcharacteristicsofthebuildinganditssurroundingsthroughtheuseofsatelliteimages,lidardata,andgeographicinformation.Additionally,themethodemploysmachinelea
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 中國(guó)煙草總公司電子交易專(zhuān)用合同
- 工程借款合同借款合同
- 宣傳服務(wù)合同協(xié)議
- 國(guó)外勞動(dòng)合同樣本
- 公司承包經(jīng)營(yíng)合同法律規(guī)定
- 通訊設(shè)備采購(gòu)安裝合同
- 河南工業(yè)和信息化職業(yè)學(xué)院《信息管理專(zhuān)業(yè)研究方法論與創(chuàng)新教育》2023-2024學(xué)年第二學(xué)期期末試卷
- 天津美術(shù)學(xué)院《生物統(tǒng)計(jì)與田間試驗(yàn)設(shè)計(jì)》2023-2024學(xué)年第二學(xué)期期末試卷
- 廣州華商職業(yè)學(xué)院《泰國(guó)社會(huì)與文化》2023-2024學(xué)年第二學(xué)期期末試卷
- 錦州醫(yī)科大學(xué)《電路電子技術(shù)與數(shù)學(xué)邏輯》2023-2024學(xué)年第二學(xué)期期末試卷
- 粵劇介紹(課堂)課件
- 人教版四年級(jí)下冊(cè)《道德與法治》教學(xué)設(shè)計(jì)(教案)
- 機(jī)床數(shù)控技術(shù)PPT完整全套教學(xué)課件
- lm3s8962開(kāi)發(fā)板用戶(hù)手冊(cè)
- IATF16949-過(guò)程審核檢查表-(含審核記錄)-
- 食品防護(hù)評(píng)估表
- 編輯出版史考試重點(diǎn)整理
- (74)-17.3手性高效液相色譜法
- 淺談新生兒肺透明膜病的影像學(xué)診斷
- SMT失效模式分析PFMEA
- 國(guó)際貿(mào)易地理全套課件
評(píng)論
0/150
提交評(píng)論