線性代數(shù)胡覺亮版(題目)_第1頁
線性代數(shù)胡覺亮版(題目)_第2頁
線性代數(shù)胡覺亮版(題目)_第3頁
線性代數(shù)胡覺亮版(題目)_第4頁
線性代數(shù)胡覺亮版(題目)_第5頁
已閱讀5頁,還剩45頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

習(xí)題解答習(xí)題一(A)1.用消元法解以下線性方程組:x12x23x34,(1)3x15x27x39,2x13x24x35.解由原方程組得同解方程組x12x23x34,x22x33,得方程組的解為x1x32,令x3c,得方程組的通解為x22x33.x1c2,x22c3,x3c,此中c為隨意常數(shù).x12x2x3x41,(2)x12x2x3x41,x12x2x35x45.解由原方程組得同解方程組x12x2x3x41,4x44,02,所以方程組無解.x1x22x31,x12x2x32,(3)3x12x25x33,x15x30.解由原方程組得同解方程組x1x22x31,x2x30,4x31,得方程組的解為x15,x21,x31.4442x12x2x43,2x13x2x33x46,(4)3x14x2x32x40,x13x2x3x42.解由原方程組得同解方程組x13x2x3x42,3x2x3x410,3x3x49,x43,得方程組的解為x12,x21,x34,x43.2.用初等行變換將以下矩陣化成行階梯形矩陣和行最簡形矩陣:122(1)212.221122122100解212r012r010,得221001001122100行階梯形:012(不獨(dú)一);行最簡形:010.0010013211(2)1232.4423102132111232255解1232r04105r01,得244423000000001021123225行階梯形:04105(不獨(dú)一);行最簡形:0152.00000040023(3)11.12231110解11r01r01,得1200001110行階梯形:01(不獨(dú)一);行最簡形:01.000011111(4)203211361.242643111111111110011220321r02501r01001解361200700,得1242643000000010000000111111001120250101001行階梯形:070(不獨(dú)一);行最簡形:.0000102000000000003.用初等行變換解以下線性方程組:x13x23x35,(1)2x1x24x311,x2x33.100M2133M537,解B214M11r010M011M39001M29得方程組的解為x127,x320,x299.3x1x24x33x41,(2)2x1x26x35x42,x12x22x32x42.1143M11143M1解B2165M2r0321M0,1222M20000M1得方程組無解.x12x23x34x44,x13x23x41,(3)x2x3x44,7x23x3x418.1000M471234M42151303M1r0101M解B2,0111M40012M230731M182M00000x147,2得方程組的解為x2x415,令x4c,得方程組的通解為2x32x423.2x147c152c23,x4c,此中c為隨意常數(shù).,x2,x32222x1x2x32x43x52,6x13x22x34x45x53,(4)6x13x24x38x413x59,4x12x2x3x42x51.21123M21100112M263245M32解Br00104M3,634813M900010M042112M100000M0x11x21x51,222得方程組的解為x34x53,令x2c1,x5c2,得方程組的通解為x40.x1c1c21c1,x34c23,x40,x5c2,此中c1,c2為隨意常數(shù).22,x22(B)x1x2x31,1.當(dāng)為什么值時(shí),線性方程組x1x2x3,有無量多解,并求解.x1x2x32111M1111M1解B11Mr010M1.11M2001M21111M1當(dāng)1時(shí),Br000M0,方程組有無量多解,且解為000M0x1x2x31.令x2c1,x3c2,得方程組的通解為x1c1c21,x2c1,x3c2,此中c1,c2為隨意常數(shù).3.(結(jié)合收入問題)已知三家企業(yè)A、B、C擁有以以下圖所示的股份關(guān)系,即A企業(yè)掌握C企業(yè)50%的股份,C企業(yè)掌握A企業(yè)30%的股份,而A企業(yè)70%的股份不受此外兩家企業(yè)控制等等.ABC3現(xiàn)設(shè)A、B和C企業(yè)各自的營業(yè)凈收入分別是12萬元、10萬元、8萬元,每家企業(yè)的聯(lián)合收入是其凈收入加上其他企業(yè)的股份按比率的提成收入.試確立各企業(yè)的結(jié)合收入及實(shí)質(zhì)收入.解A企業(yè)的結(jié)合收入為元,實(shí)質(zhì)收入為元;企業(yè)的結(jié)合收入為元,實(shí)質(zhì)收入為元;C企業(yè)的結(jié)合收入為元,實(shí)質(zhì)收入為元.習(xí)題二A)1.利用對(duì)角線法例計(jì)算以下隊(duì)列式:cossin(1).sincos解原式1.xy(2)x2y2.解原式xy(yx).123(3)312.231解原式18.a(chǎn)bc(4)0ab.00a解原式a3.00a(5)0ab.a(chǎn)bc解原式a3.2.按定義計(jì)算以下隊(duì)列式:00a0(1)b000.f00c0d0eb000c解原式a(13f0cab(111)1)dabcd.0dee010L0002L0(2)LLLLL.000Ln1n00L010L0解原式n(1)n102L0(1)n1n!.MMM00Ln13.利用隊(duì)列式的性質(zhì),計(jì)算以下隊(duì)列式:abacae(1)bdcdde.bfcfef111111解原式abcdef111abcdef0224abcdef.11100211112222(2).333344441111解原式0444192.00660008axaaa(3)aaxaaaaax.a(chǎn)aaaax11111000解原式(4ax)aaxaa(4ax)ax00(4ax)x3.a(chǎn)aaxaa0x0aaaaxa00x23100(4)1201.03518510154120112011201解原式23100011020110203518035180035125101540015100151123512215.01151111L11a10L0(5)10a2L0,此中a0,i1,2,L,n.iMMMLM100Lanr1r1aii2in解原式

n10L010i1ai1a10L0n1n)ai.10a2L(1i1ai0i1MMMLM100Lan4.利用隊(duì)列式睜開定理,計(jì)算以下隊(duì)列式:12140121(1)01.13013102010100101222121323解原式01117.1331131301311139365827(2)53.4278450030323014153223141531443144解原式1434318.343066663443a100L010a20L0000a3L00(3)MMMMM.000Lan10100L0an00L01a10L0a20L000a2L0解原式n1(1)0a3L00anMMMMMMM00Lan100Lan01a20L0n11(n1)0a3L0a1a2Lan(1)(1)MMM00Lan1a2a3Lan1a1a2Lana2a3Lan1(a1an1).210L00121L00(4)Dn012L00MMM.MM000L21000L12解將隊(duì)列式按第一行睜開,得Dn2Dn1Dn2,則DnDn1Dn1Dn2LD2D121121,2所以DnDn11Dn22LD1(n1)n1.5.利用隊(duì)列式睜開定理證明:當(dāng)時(shí),有0L001L0001L00n1n1DnMMOMM.M000L000L1證將隊(duì)列式按第一行睜開,得Dn()Dn1Dn2,則DnDn1(Dn1Dn2)2(Dn2Dn3)Ln2(D2D1)n2[()2()]n,所以DnDn1n.(1)由Dn對(duì)于與對(duì)稱,得DnDn1n.(2)n1n1由(1)與(2)解得Dn(類比于高中學(xué)過的由數(shù)列an與an-1的關(guān)系推導(dǎo)通項(xiàng)公式)abc6.利用范德蒙品德列式計(jì)算隊(duì)列式a2b2c2.bcacababc111解原式(abc)a2b2c2(abc)abc111a2b2c2(abc)(ba)(ca)(cb).214211257.設(shè)D,試求A14+A24+A34+A44和M11+M12M13M14.31335111解A14+A24+A34+A440;1111M11+M12M13M14A11A12A131125A14133351110100346502132654422422142284.22062062612608.利用克拉默法例解以下線性方程組:x1x2x3x45,x12x2x34x42,(1)3x2x35x42,2x13x1x22x311x40.解經(jīng)計(jì)算,得D142,D1142,D2284,D3426,D4142,所以方程組的解為x11,x22,x33,x41.x12x23x34x411,(2)x2x3x43,x13x2x40,7x23x3x45.解經(jīng)計(jì)算,得D16,D116,D20,D332,D416,所以方程組的解為x11,x20,x32,x41.2x1x23x30,9.試問取何值時(shí),齊次線性方程組3x14x27x30,有非零解.x12x2x30解方程組有非零解,則D0.又213D3475(3),12所以3.x1x2x30,10.試問、取何值時(shí),齊次線性方程組x1x2x30,有非零解.x12x2x30解方程組有非零解,則D0.又11D11(1),121所以1或0.(B)1.選擇題:2a111a135a123a12a11a12a1331(1)設(shè)a21a22a23a0,則2a21a235a223a22().3a31a32a332a311a335a323a323(A)2a(B)2a(C)3a(D)3a1a11a135a12a123解原式c22(3)a211a235a22a22c5c3c3(3)c23a3115a32a32c2c3a33

61a11a12a13(a21a22a23)2a.3a31a32a333選(A).a(chǎn)100b1(2)四階隊(duì)列式0a2b20的值等于().0b3a30b400a4(A)a1a2a3a4bb12b3b4(B)a1a2a3a4bb12b3b4(C)a1a2bb12a3a4b3b4(D)a2a3b2b3a1a4bb14解將隊(duì)列式的第4行挨次與第3行、第2行互換,再將隊(duì)列式的第4列挨次與第3列、第2列互換,得a100b1a1b1000a2b20b4a400a2a3b2b3a1a4b1b4.0b3a3000a2b2b400a400b3a3選(D).(3)設(shè)線性方程組a11x1a12x2b10,a11a121,則方程組的解為a21x1a22x2b2若a21a220.().(A)xb1a12,x2a11b1(B)xb1a12,x2a11b11b2a22a21b21b2a22a21b2(C)x1b1a12,x2a11b1(D)x1b1a12,x2a11b1b2a22a21b2b2a22a21b2解將方程組寫成標(biāo)準(zhǔn)形式:a11x1a12x2b1,有a21x1a22x2b2.Da11a121,D1b1a12b1a12,D2a11b1a11b1,a21a22b2a22b2a22a21b2a21b2所以方程組的解為D1b1a12D2a11b1x1b2a22,x2a21.DDb2選(C).1111xabc0的根的個(gè)數(shù)為((4)方程f(x)=a2b2c2).x2x3a3b3c3(A)1(B)2(C)3(D)4解方法一:將f(x)按第1列睜開,知f(x)為3次多項(xiàng)式,所以有3個(gè)根.選(C).方法二:f(x)(ax)(bx)(cx)(ba)(ca)(cb)有3個(gè)根x1a,x2b,x3c.選(C).a(chǎn)10a202.計(jì)算四階隊(duì)列式D40b10b2.c10c200d10d2a10a20a1a200解D4c10c20c1c2000b10b200b1b20d10d200d1d2a1a2b1b2(a1c2a2c1)(b1d2b2d1).c1c2d1d2111x13.計(jì)算四階隊(duì)列式D411x11.1x111x1111x11x1111x1D4x1x1111x11解xx111xx1111x1111111100xx10x043x(1)2xxxx4.1x0010004.計(jì)算n階隊(duì)列式rnrn1rn1rn2LLLr2r1解Dn

123212Dn321LLLnn1n2123Ln1111L1111L1MMMM111L1

LnLn1Ln2.LL1n134Lnn11100L001cj120L00Mc1MM2jnMMM1122L20100L120L1n(n1)(1)122LMMM122L

000(1)1n(n1)2n2.M2n12aa200012aa2005.計(jì)算五階隊(duì)列式D5012aa20.0012aa200012a解方法一:一般地,對(duì)于此類n階隊(duì)列式,將其按第一行睜開,得Dn2Dn12Dn2,則DnDn1(Dn1Dn2)2(Dn2Dn3)Ln2(D2D1)n2[(2)222]n,有DnDn1n(Dn2n1)n2Dn22nLn1D1(n1)nn12(n1)n(n1)n,所以D56a5.方法二:由習(xí)題二(A)的第5題,適當(dāng)時(shí),有n1n1n(n1)n,Dnlim(n1)lim所以D56a5.x00L0a01x0L0a16.計(jì)算n階隊(duì)列式Dn01xL0a2.MMMMM000Lxan2000L1xan1解將隊(duì)列式按第一行睜開,得DnxDn1a0,則Dnx(xDn2a1)a0x2Dn2a1xa0Lxn1D1an2xn2La1xa0xn1(xan1)an2xn2La1xa0xnan1xn1La1xa0.13267.已知1326、2743、5005、38742743都能被13整除,不計(jì)算隊(duì)列式的值,證明00553874能被13整除.13262743證00553874

c41000c1c4100c2c410c3

13213262742743500.50053873874由已知,得后隊(duì)列式的第4列擁有公因子13,所以原隊(duì)列式能被13整除.1111abcd(ab)(ac)(ad)(bc)(bd)(cd)(abcd).8.證明:b2c2d2a2a4b4c4d4證結(jié)構(gòu)5階隊(duì)列式11111abcdxD5a2b2c2d2x2,a3b3c3d3x3a4b4c4d4x4則D5(ba)(ca)(da)(cb)(db)(dc)(xa)(xb)(xc)(xd).(1)將D5按第5列睜開,得11111111D5abcd4(abcd3(2)a2b2c2d2xa2b2c2d2)xL.a(chǎn)3b3c3d3a4b4c4d4比較(1)與(2)右側(cè)x3的系數(shù),知結(jié)論建立.x1x2x3ax40,9.證明:當(dāng)(a1)24b時(shí),齊次線性方程組x12x2x3x40,有非零解.x1x23x3x40,x1x2ax3(ab)x40證方程組的系數(shù)隊(duì)列式111aD1211(a1)24b,113111aab當(dāng)D0,即(a1)24b時(shí),方程組有非零解.10.應(yīng)用題:(1)1;(2)xy10.習(xí)題三A)1.以下矩陣中,哪些是對(duì)角矩陣、三角矩陣、數(shù)目矩陣、單位矩陣.11000100300200,C420,D030A,B01.030100530030解D是數(shù)目矩陣,也是對(duì)角矩陣;A、C是三角矩陣;B都不是.1121232.設(shè)矩陣A111,B122.211031(1)計(jì)算2AB;(2)若X知足3AX2B,求X.347解(1)2AB100;411110(2)X2B3A577.695a1c1d1b1c1d13.設(shè)有3階方陣Aa2c2d2,Bb2c2d2,且A1,B2,求A2B.a(chǎn)3c3d3b3c3d3a12b13c13d1解A2Ba22b23c23d2a32b33c33d3a1c1d1b1c1d19(a2c2d22b2c2d2)9(A2B)45.a(chǎn)3c3d3b3c3d34.計(jì)算以下矩陣的乘積:2396.(1)6614解原式09.0181311(2)0422.70118解原式6.61(3)3212.3解原式10.1(4)2321.3321解原式642.9632001002(5)010010.0030013解原式E3.a(chǎn)11a12a13x1(6)x1x2x3a12a22a23x2.a(chǎn)13a23a33x3解原式a11x12a22x22a33x322a12x1x22a13x1x32a23x2x3.1031005.已知矩陣A021,B021.求:001301(1)AB與BA;(2)(AB)(AB)與A2B2.1003103解(1)AB343,BA043;3013010906006(2)(AB)(AB)600,A2B2300.6096001a0)可互換的全部矩陣.6.求與矩陣A(a01解設(shè)與A可互換的矩陣Bx1x2.由ABBA,得x3x4x1ax3x1,x1x4,x2ax4ax1x2,x2x2,x3x3,x30,x4ax3x4,x4x4.令x2c,x4b,得Bbc,此中b,c為隨意常數(shù).0b7.利用概括法,計(jì)算以下矩陣的k次冪,此中k為正整數(shù):cossin.(1)cossin解令A(yù)cossin,有sincosA2cos2sin2,A3cos3sin3,Lsin2cos2sin3cos3則Akcosksink.sinkcosk12.(2)10解令A(yù)12,有A21416,A418010,A3010,L,則11Ak12k.011103)011.001110解令A(yù)011,有0011211331461510A2012,A3013,A4014,A5015,L0010010010011kCk2則Ak01k.0018.已知矩陣123,111,令A(yù)T,求An,此中n為正整數(shù).23解AnT(T)n1(T)n1(T)3n1(T)11n1133n133n2223n121223n123n1.3n133n3n3n1312329.若A為n階對(duì)稱矩陣,P為n階矩陣,證明PTAP為對(duì)稱矩陣.由于(PTAP)TATA證PTAT(PT)TPTAP,所以PTAP為對(duì)稱矩陣.10.利用公式法求以下矩陣的逆矩陣:(1)A34.21141A*14解A50,又A*,所以A155.23A2355100(2)A210.3311001A*100解A10,又A*210,所以A1210.331A331122(3)A212.221解A270,又A*3A,所以A11A*1A.A91111(4)A1111111.11111解A160,又A*4A,所以A11A*1A.A411.解以下矩陣方程:(1)12X021.2321312102132021483X解232132121325.10101(2)設(shè)XAXB,此中A111,B1.1011解由XAXB,得(EA)XB.又110EA101,EA30,102則EA可逆,且XEA1B.經(jīng)計(jì)算,得()11021(EA)1E(EA)*321.A3011102111所以XEA1B.()33211001110100001321(3)001X010987.01010065410110000110100解001001,010010,則01001010010010012100112331X001987010456.01065410078912.設(shè)Adiag(1,2,1),且矩陣B知足A*BA2BA8E,求矩陣B.解等式A*BA2BA8E兩邊左乘以A,得ABA2ABA8A.又A20,上式兩邊右乘以A1,得2B2AB8E,即(EA)B4E,所以B4(EA)14diag(1,1,1)2A.2213.設(shè)A,B,C都是n階矩陣,證明:ABC可逆的充分必需條件是A,B,C都可逆.證ABC可逆ABC0ABC0A0,B0,C0A,B,C都可逆.2A1.設(shè)n階方陣A知足A3AO,證明A2E可逆,并求2E.14證由A23AO,得(A2E)(AE)2E,即(A2E)AEE,2所以A2EA1AE.可逆,且2E215A為n階矩陣,且A3O,證明EA及EA都是可逆矩陣..設(shè)證由A2O,得(EA)(EAA2)E及(EA)(EAA2)E,所以EA及EA都是可逆矩陣.16.已知A為三階方陣,且A2,求:(1)2A1;(2)A*;(3)A*1A1.2解(1)原式1A1(1)311.22A16(2)原式24.A(3)A*1A1AA11A15A1,有222原式5A1(5)31125.22A16123117.設(shè)A231,求A*.312解A18,則A*1AA.A1818.(1)設(shè)P1APB,證明BkP1AkP.100100(2)設(shè)APPB,且P210,B000,求A與A2011.211001證(1)Bk(P1AP)kP1A(PP1)A(PP1)L(PP1)APP1AkP.(2)由APPB,得APBP1,且A2011PB2011P1.又100100P1210,B2011000B,411001100所以A200,A2011PBP1A.61119.利用分塊矩陣計(jì)算以下矩陣的乘積:1210103001010121(1)021002.0300030003解將矩陣進(jìn)行以下分塊:12M1010M3001M01A1E01M21EB1LLLLL,LLLLL,OA2OB200M2100M2300M0300M03則原式A1EEB1A1A1B1B2.又OA2OB2OA2B2A1B1B2123023512123490121032,A2B203030,291251所以原式0122004.90009a0100c(2)0a01c010b0d.0010b0d解將矩陣進(jìn)行以下分塊:a0M100c0aM01aEEc0CLLLLL,LL,EbEdE10Mb0d001M0b0ddac則原式aEECaCdEacd.EbEdECbdEbdccbd20.利用分塊矩陣求以下矩陣的逆矩陣:130(1)120.005解將矩陣進(jìn)行以下分塊:13M012M0A1OA,LLLLOA200M51111231A1則AO355OA21.又A121115523055A1110551005

,A21511,所以5.21001300(2)03.030042解將矩陣進(jìn)行以下分塊:21M0013M00A1O,ALLLLL00M33OA200M423111A11O211331則A1155132,OA2.又A11312,A242211553231050512050所以A15.1010230210232000001200(3)01300.0002500021解將矩陣進(jìn)行以下分塊:2M00M0LLLLLL0M12M0A0M13M0LLLLLL0M00M20M00M2則A1diag(A11,A21,A31).又111321112A122,A2131110000203200所以A10110000015.880001144110021.設(shè)矩陣A0100,利用分塊矩陣計(jì)算00120021

0L0A10=A2,LA35115251,A3188,211144A4.解將矩陣進(jìn)行以下分塊:11M0001M00ALLLLLdiag(A1,A2),00M1200M21則A4diag(A4,A4).又A4144140,A412101240411400A40100004140004041

,所以.2500130022.設(shè)矩陣A02,利用分塊矩陣計(jì)算A2012.0100122解將矩陣進(jìn)行以下分塊:25M0013M00ALLLLLdiag(A1,A2),00M2100M122則AA1A21(8)8,所以A2012201282012.AOBC123.(1)設(shè)A.C,且m階矩陣B和n階矩陣C均可逆,試證明A1OOB1O0a10L000a2L0(2)設(shè)矩陣AMMMM,此中a,a,L,a1.12n為非零常數(shù),求000Lan1an00L0證OBOC1BB1OEO(1)由于OB1OOCC1OE,所以A可逆,CE且A1OC1B1O.(2)將矩陣進(jìn)行以下分塊:0Ma10L00M0a2L00MMMMOBAM00Lan1C,0OLLLLLLanM00L0則A1OC1.又BB1OA

1diag(a11,a21,L,an11),C1(an1),所以000an1a1100010a2100.00an11024.利用矩陣的初等行變換判斷以下矩陣能否可逆;如可逆,求其逆矩陣.130(1)312.433103M130130M100510101M31解AE312M010r010.433M00151010000M131221035由于011E,所以A不行逆.5000122(2)212.221100M122122M100999010M212,解AE212M010r221M001999001M221999122999所以A可逆,且A1212.9992219993201(3)0221.123201213201M1000解AE0221M01001232M00100121M00011000M1124r0100M0101,0010M11360001M216101124所以A可逆,且A10101.11362161011111111(4)A.111111111111M10001111M0100解AE111M001011111M00011000M101022r0100M011022,0011M1100220000M0011所以A不行逆.25.利用矩陣的初等行變換解以下矩陣方程:123130(1)324X1027.2101078123M130100M645解324M1027r010M212EX,210M1078001M333645所以X212.333531830(2)X132590.5212150515852解將方程兩邊轉(zhuǎn)置,得332XT3915.由121000515M100100M147332M010r010M258EXT,121M001001M369123得X456.78926.求以下矩陣的秩:1562(1)2132.143015621562解A2132r0992,所以R(A)2.1430000021324(2)42517.211822132421324解A42517r00151R(A)2.211820000013122123(3)21.31143513121312解A2123r0747R(A)2.321100001435000031325(4)53234.13507751413132513507解A53234r049113135070000R(A)3.1751410000012127.設(shè)矩陣A251,且R(A)3,求的值.1161012111610解A251r01510.116100033(3)由R(A)3,得3.123k28.設(shè)矩陣A12k3,問k取何值時(shí),使得k23(1)R(A)1;(2)R(A)2;(3)R(A)3.123k123k解A12k3r02(k1)3(k1),有k23003(k1)(k2)當(dāng)k1且k2時(shí),R(A)3;當(dāng)k1時(shí),R(A)1;當(dāng)k2時(shí),R(A)2.10129.設(shè)A是43矩陣,且A的秩為2,而B111,求R(AB).123解B20,則R(AB)R(A)2.30.設(shè)A為n階矩陣,知足A25A6EO,證明:R(A2E)R(A3E)n.證由A25A6EO,得(A2E)(A3E)O,所以R(A2E)R(A3E)n.又R(A2E)R(A3E)R(A2E)R(A3E)R(E)n,所以R(A2E)R(A3E)n.11031.設(shè)三階矩陣A212,試求R(A)與R(A*).122110110解A212r012R(A)2.122000由于R(A)231R(A*)1.32.求解以下線性方程組:x1x24x30,(1)2x19x26x30,3x15x22x30.解方程組的系數(shù)矩陣114114A296r012.352001由于R(A)3,所以方程組只有零解.x12x2x31,(2)2x1x2x33,x12x23x37.解方程組的增廣矩陣121M1100M1BA211M3r010M1,123M7001M2所以方程組的解為x1,x21,x32.12x13x2x37x40,3x1x22x37x40,(3)4x1x23x36x40,x12x25x35x40.解方程組的系數(shù)矩陣10012317273127r010A2,41360015125520000得方程組的解為x11x4,2x27x4,2x35x4.2令x42c,得方程組的通解Xc(1,7,5,2)T,此中c為隨意常數(shù).x1x2x3x40,(4)2x13x2x3x42,3x12x2x3x45,3x16x2x3x44.解方程組的增廣矩陣1111M01111M0BA2311M2r0133M23211M5.0055M73611M40000M5由于R(A)3R(B)4,所以方程組無解.2x1x25x315,(5)x13x2x34,x14x26x311,3x12x24x319.解方程組的增廣矩陣215M15102M7BA131M4r011M1146M11000M,0324M19000M0得方程組的解為x12x37,x2x31.令x3c,得方程組的通解Xc(2,1,1)T(7,1,0)T,此中c為隨意常數(shù).x1x23x32x41,(6)x1x22x3x42,2x12x27x37x41,2x12x28x310x40.解方程組的增廣矩陣1132M11107M4BA1121M2r0013M12277M10000M,022810M00000M0得方程組的解為x1x27x44,x33x41.令x2c1,x4c2,得方程組的通解為Xc1(1,1,0,0)Tc2(7,0,3,1)T(4,0,1,0)T,此中c1,c2為隨意常數(shù).33.試問取何值時(shí),以下非齊次線性方程組無解、有獨(dú)一解、有無量多解.(1)x1x2x31,(1)x1(1)x2x3,x1x2(1)x31.解方程組的系數(shù)隊(duì)列式111A111(3)2.111當(dāng)A0,即0且3時(shí),方程組有獨(dú)一解.當(dāng)0時(shí),111M1111M1BA111M0r000M1.111M1000M0由于R(A)1R(B)2,所以方程組無解.當(dāng)3時(shí),211M1112M2BA121M3r033M5.112M2000M0由于R(A)R(B)23,所以方程組有無量多解.(2)x12x22x31,(2)2x1(5)x24x32,2x14x2(5)x31.解方程組的系數(shù)隊(duì)列式222222r3r2)(1)2.A254254(10245011當(dāng)A0,即1且10時(shí),方程組有獨(dú)一解.當(dāng)10時(shí),822M1254M2BA254M2r011M1.245M11000M1由于R(A)2R(B)3,所以方程組無解.當(dāng)1時(shí),122M1122M1BA244M2r000M0.244M2000M0由于R(A)R(B)13,所以方程組有無量多解.x1x3,34.試問取何值時(shí),非齊次線性方程組4x1x22x32,有解,并求解.6x1x24x323解方程組的增廣矩陣101M101MBA412M2r012M23.614M23000M1當(dāng)1時(shí),BA

101M1r012M1,000M0有R(A)R(B)23,則方程組有無量多解,且解為x1x31,x22x31.令x3c,得方程組的通解為Xc(1,2,1)T(1,1,0)T,此中c為隨意常數(shù).35.求平面上三點(diǎn)(x1,y1),(x2,y2),(x3,y3)共線的充分必需條件.解設(shè)直線方程為axbyc0.則x1ay2bc0,平面上三點(diǎn)(x1,y1),(x2,y2),(x3,y3)共線xaybc0,有非零解22x3ay3bc0x1y11111x2y210,即x1x2x30.x3y31y1y2y3(B)1.選擇題:(1)設(shè)A,B為n階矩陣,以下結(jié)論正確的選項(xiàng)是().(A)若A、B是對(duì)稱矩陣,則AB也是對(duì)稱矩陣.(B)ABABA2B2.(C)若ABO,且A可逆,則BO.(D)若A與B等價(jià),則A與B相等.解選(C).2nn矩陣,則必有().()設(shè)A和B均為(A)AB=A+B.(B)ABBA.(C)AB=BA.(D)AB1A1B1.解選(C).(3)設(shè)A為n(n2)階矩陣,A*是A的陪伴矩陣,k為常數(shù),則(kA)*().(A)A*.(B)kA*.(C)kn1A*.(D)knA*.解由陪伴矩陣的定義,知選(C).(4)設(shè)A和B均為n階非零矩陣,且ABO,則A和B的秩().(A)必有一個(gè)等于零.(B)一個(gè)等于n,一個(gè)小于n.(C)都等于n.(D)都小于n.解由ABO,得R(A)R(B)n.又AO,BO,知R(A)1,R(B)1.所以R(A)n,R(B)n,應(yīng)選(D).(5)對(duì)于非齊次線性方程組AmnXn1m1,若R(A)r,則().(A)當(dāng)rm時(shí),AmnXn1m1有解.(B)當(dāng)rn時(shí),AmnXn1m1有獨(dú)一解.(C)當(dāng)mn時(shí),AmnXn1m1有獨(dú)一解.(D)當(dāng)rn時(shí),AmnXn1m1有無量多解.解當(dāng)rm時(shí),mR(B)R(A)rmR(A)R(B)r,應(yīng)選(A).213421262.設(shè)矩陣A02130334,試求(EA1B)TAT002,B0045.100020005解(EA1B)TAT(A(EA1B))T(AB)T,則(EA1B)TAT(AB)TAB0.1013.設(shè)矩陣A020,且A2BABE,試求B.301解由A2BABE,得(AE)(AE)BAE.又AE30,有(AE)BE,兩邊取隊(duì)列式,得AEB1,所以11B.AE31004.設(shè)矩陣A230,且B(EA)1(EA),試求(EB)1.045解EB(EA)1(EA)(EA)1(EA)2(EA)1,則100(EB)11(EA)120.22300105.設(shè)矩陣A100,BP1AP,試求B2012A2.001解A2diag(1,1,1)A4E,所以200B2012A2(B4)503A2EA2020.0001116.設(shè)矩陣A111,矩陣X知足A*XA12X,試求矩陣X.111解由A*XA12X,得AXE2AX.又11022經(jīng)計(jì)算可得(2EA)1011,所以X2210122

A4,有X1(2EA)1.2110440114.41014411002,且矩陣X知足AX2X,試求矩陣X.7.設(shè)矩陣A210,011012解由AX2X,得(A2E)X.(注意A2E0)又110M0101M12r2A2E210M0012M1,112M1000M02c112得方程組的解為x1x32,令x3c,得X2c1,c為隨意常數(shù).x22x31.c1aLa8.設(shè)n(n3)階矩陣Aa1La,試求A的秩R(A).MMMaaL1解A[1(n1)a](1a)n1.當(dāng)a1且an1時(shí),A為非奇怪矩陣,所以R(A)n;111L111L1當(dāng)a1時(shí),A11L1r00L0,則R(A)1;MMMMMM11L100L0當(dāng)a1時(shí),A的n1階子式n11aLaDn1a1La[1(n2)a](1a)n20MMMaaL1n1而A0,所以R(A)n1.x1x22x33x40,9.試求p,q取何值時(shí),齊次線性方程組2x1x26x34x40,3x12x2px3qx4有非零解,并求通解.0,2x1x2x40解方程組的系數(shù)矩陣112311232164r0122A2pq002.312101000p2q6當(dāng)p2q6時(shí),R(A)34,方程組有非零解,且10010103r1A01,020000得方程組的解為x1x4,x23x4,x31x4.2令x42c,得方程組的通解為Xc(2,6,1,2)T,此中c為隨意常數(shù).2x1ax2x31,10.試求a取何值時(shí),非齊次線性方程組ax1x2x32,無解、有獨(dú)一解或無量多解,4x15x25x31并在有無量多解時(shí)求方程組的通解.解方程組的系數(shù)隊(duì)列式2a1Aa11(a1)(5a4).455當(dāng)a1且a4時(shí),方程組有獨(dú)一解.5當(dāng)a1時(shí),211M2100M1BA111M1r011M1.455M0000M0由于R(A)R(B)23,所以方程組有無量多解,且通解為Xc(0,1,1)T(1,1,0)T,此中c為隨意常數(shù).當(dāng)a4時(shí),方程組無解.512211.設(shè)矩陣A4t3,B為三階非零矩陣.試求常數(shù)t,使得ABO.311解ABO,BOAX0有非零解A0.又A7(t3),所以t3.12.證明:(1)設(shè)A,B為矩陣,則ABBA存心義的充分必需條件是A,B為同階矩陣.(2)對(duì)隨意n階矩陣A,B,都有ABBAE,此中E為單位矩陣.證(1)設(shè)A為mn矩陣,B為st矩陣,則ns,tm,ABBA存心義mnst,ms,t

n.即A,B

為同階矩陣.(2)設(shè)

A

(aij)nn,B

(bij)nn,則AB

BA的主對(duì)角線上元素之和為n

n

n

n

nn

n

naikbki

bstats

aikbki

atsbst

0,i1k1

s1t1

i1

k1

t1

s1而E的主對(duì)角線上元素之和為

n,所以

AB

BA

E.13.證明:隨意n階矩陣都可表示為一個(gè)對(duì)稱矩陣與一個(gè)反對(duì)稱矩陣的和.證設(shè)A為隨意n階矩陣,則AATAATA,22此中為AAT對(duì)稱矩陣,AAT為反對(duì)稱矩陣.(你能否能聯(lián)系到函數(shù)能夠表示為奇函數(shù)22與偶函數(shù)之和)14n階矩陣A,B知足ABAB,試證AE可逆,并求(AE)..已知1證由ABAB,得(AE)(BE)E,所以AE可逆,且(AE)1BE.15.設(shè)A為元素全為1的n(n1)階方陣,證明:EA1E1A.n1證EA(En1A)EnA1A2.又A2nA,故1n1n1EA(E1A)E,11n所以EA1EA.n116.設(shè)n階矩陣A與B等價(jià),且A0,證明B0.證A與B等價(jià),則存在n階可逆矩陣P與Q,使得BPAQ,有BPAQPAQ0.注:此結(jié)論告訴我們初等變換不改變矩陣的可逆性.17.設(shè)A為n階方陣,且A2A,證明RARAEn.證由于A(AE)A2AO,所以RARAEn.又RARAERARAER(E)n,所以RARAEn.18.設(shè)A是nm矩陣,B是mn矩陣,此中nm.若ABE,此中E為n階單位矩陣.證明方程組BXO只有零解.證由ABE,得R(AB)n.又nR(B)R(AB)n,得R(B)n,所以方程組BXO只有零解.習(xí)題四A)1.設(shè)v1(1,1,0)T,v2(0,1,1)T,v3(3,4,0)T,求v1v2和3v12v2v3.解v1v2(1,0,1)T,3v12v2v3(0,1,2)T.2.求解以下向量方程:(1)3X,此中(1,0,1)T,(1,1,1)T.解X1()1(0,1,2)T.33(2)2X33X,此中(2,0,1)T,(3,1,1)T.解X3(3,1,4)T.3.試問向量能否由向量組1,2,3,4線性表示若能,求出由1,2,3,4線性表示的表達(dá)式.1112;111(1),2,3111111解設(shè)x11x22x33x44.由

111,41.11111000M51111M140100M11111M2(1,2,3,4|)r4,1111M110010M1111M140001M14得R(1,2,3,4)R(1,2,3,4|)4,所以可由向量組1,2,3,4線性表示,且x151,x3111(54).,x24,x44,得表達(dá)式12344401111(2)2;11,21,31,40.0110011000解設(shè)x11x22x33x44.由1111M01000M1(1,2,3,4|)1110M2r0100M11100M00010M,21000M10001M2得R(1,2,3,4)R(1,2,3,4|)4,所以可由向量組1,2,3,4線性表示,且x11,x21,x32,x42,得表達(dá)式122324.4.議論以下向量組的線性有關(guān)性:32132(1)12,21,33,41,53.45571解向量組所含向量個(gè)數(shù)大于向量的維數(shù),所以該向量組線性有關(guān).a(chǎn)xayaz(2)1bx,2by,3bz,此中a,b,c,x,y,z全不為零.cxcycz解1,2對(duì)應(yīng)的重量成比率,則1,2線性有關(guān),所以該向量組線性有關(guān).11(3)011,22,3124112解1,2,3013r121240

23.101213.001000由于R1,2,33,所以該向量組線性沒關(guān).11122,32(4)1,2,3010301110解(1,2,32220,4)01130301

004.111110r0301001.00000由于R(1,2,3,4)34,所以該向量組線性有關(guān).5.(1)設(shè)Rn,證明:線性有關(guān)當(dāng)且僅當(dāng)0.(2)設(shè)1,2Rn,證明:1,2線性有關(guān)當(dāng)且僅當(dāng)它們對(duì)應(yīng)的重量成比率.證(1)線性有關(guān)k0,k00.(2)1,2線性有關(guān)k11k220,此中k,k2不全為零.不

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論