初中數(shù)學(xué)知識(shí)點(diǎn)分類(lèi)總結(jié)_第1頁(yè)
初中數(shù)學(xué)知識(shí)點(diǎn)分類(lèi)總結(jié)_第2頁(yè)
初中數(shù)學(xué)知識(shí)點(diǎn)分類(lèi)總結(jié)_第3頁(yè)
初中數(shù)學(xué)知識(shí)點(diǎn)分類(lèi)總結(jié)_第4頁(yè)
初中數(shù)學(xué)知識(shí)點(diǎn)分類(lèi)總結(jié)_第5頁(yè)
已閱讀5頁(yè),還剩44頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

中考數(shù)學(xué)總復(fù)習(xí)資料

代數(shù)部分

第一章:實(shí)數(shù)基礎(chǔ)知識(shí)點(diǎn):、實(shí)數(shù)的分類(lèi):‘ 「正整數(shù)、整數(shù)』零負(fù)整數(shù)’有限小數(shù)或無(wú)限循環(huán)小分?jǐn)?shù)」正分?jǐn)?shù)分?jǐn)?shù)」負(fù)分?jǐn)?shù)無(wú)理數(shù)丿正無(wú)理數(shù)無(wú)理數(shù)丿正無(wú)理數(shù)負(fù)無(wú)理數(shù)1無(wú)限不循環(huán)小數(shù)1、 有理數(shù):任何一個(gè)有理數(shù)總可以寫(xiě)成-的形式,其中p、q是互質(zhì)q的整數(shù),這是有理數(shù)的重要特征。2、 無(wú)理數(shù):初中遇到的無(wú)理數(shù)有三種:開(kāi)不盡的方根,如、34;特定結(jié)構(gòu)的不限環(huán)無(wú)限小數(shù),如1.1001 ;特定意義的數(shù),如n、sin45°等。3、 判斷一個(gè)實(shí)數(shù)的數(shù)性不能僅憑表面上的感覺(jué),往往要經(jīng)過(guò)整理化簡(jiǎn)后才下結(jié)論。二、實(shí)數(shù)中的幾個(gè)概念1、 相反數(shù):只有符號(hào)不同的兩個(gè)數(shù)叫做互為相反數(shù)。(1)實(shí)數(shù)a的相反數(shù)是-a; (2)a和b互為相反數(shù)=a+b=O2、 倒數(shù):實(shí)數(shù)a(az0)的倒數(shù)是1;(2)a和b互為倒數(shù)=ab=1;(3)a注意0沒(méi)有倒數(shù)3、 絕對(duì)值:一個(gè)數(shù)a的絕對(duì)值有以下三種情況:,a(a>0)ld=0(a=0)?—疋VO)}實(shí)數(shù)的絕對(duì)值是一個(gè)非負(fù)數(shù),從數(shù)軸上看,一個(gè)實(shí)數(shù)的絕對(duì)值,就是數(shù)軸上表示這個(gè)數(shù)的點(diǎn)到原點(diǎn)的距離。去掉絕對(duì)值符號(hào)(化簡(jiǎn))必須要對(duì)絕對(duì)值符號(hào)里面的實(shí)數(shù)進(jìn)行數(shù)性(正、負(fù))確認(rèn),再去掉絕對(duì)值符號(hào)。4、n次方根平方根,算術(shù)平方根:設(shè)a>0,稱一;a叫a的平方根,a叫a的算術(shù)平方根。正數(shù)的平方根有兩個(gè),它們互為相反數(shù);0的平方根是0;負(fù)數(shù)沒(méi)有平方根。立方根:3a叫實(shí)數(shù)a的立方根。一個(gè)正數(shù)有一個(gè)正的立方根;0的立方根是0;一個(gè)負(fù)數(shù)有一個(gè)負(fù)的立方根。三、 實(shí)數(shù)與數(shù)軸1、 數(shù)軸:規(guī)定了原點(diǎn)、正方向、單位長(zhǎng)度的直線稱為數(shù)軸。原點(diǎn)、正方向、單位長(zhǎng)度是數(shù)軸的三要素。2、 數(shù)軸上的點(diǎn)和實(shí)數(shù)的對(duì)應(yīng)關(guān)系:數(shù)軸上的每一個(gè)點(diǎn)都表示一個(gè)實(shí)數(shù),而每一個(gè)實(shí)數(shù)都可以用數(shù)軸上的唯一的點(diǎn)來(lái)表示。實(shí)數(shù)和數(shù)軸上的點(diǎn)是 對(duì)應(yīng)的關(guān)系。四、 實(shí)數(shù)大小的比較1、 在數(shù)軸上表示兩個(gè)數(shù),右邊的數(shù)總比左邊的數(shù)大。2、 正數(shù)大于0;負(fù)數(shù)小于0;正數(shù)大于一切負(fù)數(shù);兩個(gè)負(fù)數(shù)絕對(duì)值大的反而小。五、 實(shí)數(shù)的運(yùn)算1、 加法:同號(hào)兩數(shù)相加,取原來(lái)的符號(hào),并把它們的絕對(duì)值相加;異號(hào)兩數(shù)相加,取絕對(duì)值大的加數(shù)的符號(hào),并用較大的絕對(duì)值減去較小的絕對(duì)值??墒褂眉臃ń粨Q律、結(jié)合律。2、 減法:減去一個(gè)數(shù)等于加上這個(gè)數(shù)的相反數(shù)。3、 乘法:兩數(shù)相乘,同號(hào)取正,異號(hào)取負(fù),并把絕對(duì)值相乘。n個(gè)實(shí)數(shù)相乘,有一個(gè)因數(shù)為0,積就為0;若n個(gè)非0的實(shí)數(shù)相乘,積的符號(hào)由負(fù)因數(shù)的個(gè)數(shù)決定,當(dāng)負(fù)因數(shù)有偶數(shù)個(gè)時(shí),積為正;當(dāng)負(fù)因數(shù)為奇數(shù)個(gè)時(shí),積為負(fù)。乘法可使用乘法交換律、乘法結(jié)合律、乘法分配律。4、 除法:兩數(shù)相除,同號(hào)得正,異號(hào)得負(fù),并把絕對(duì)值相除。除以一個(gè)數(shù)等于乘以這個(gè)數(shù)的倒數(shù)。0除以任何數(shù)都等于0,0不能做被除數(shù)。5、 乘方與開(kāi)方:乘方與開(kāi)方互為逆運(yùn)算。6、 實(shí)數(shù)的運(yùn)算順序:乘方、開(kāi)方為三級(jí)運(yùn)算,乘、除為二級(jí)運(yùn)算,加、減是一級(jí)運(yùn)算,如果沒(méi)有括號(hào),在同一級(jí)運(yùn)算中要從左到右依次運(yùn)算,不同級(jí)的運(yùn)算,先算高級(jí)的運(yùn)算再算低級(jí)的運(yùn)算,有括號(hào)的先算括號(hào)里的運(yùn)算。無(wú)論何種運(yùn)算,都要注意先定符號(hào)后運(yùn)算。六、科學(xué)記數(shù)法1、科學(xué)記數(shù)法:設(shè)N>0,則N=axion(其中1<av10,n為整數(shù)))代數(shù)部分第二章:代數(shù)式基礎(chǔ)知識(shí)點(diǎn):一、 代數(shù)式1、 代數(shù)式:用運(yùn)算符號(hào)把數(shù)或表示數(shù)的字母連結(jié)而成的式子,叫代數(shù)式。單獨(dú)一個(gè)數(shù)或者一個(gè)字母也是代數(shù)式。2、 代數(shù)式的值:用數(shù)值代替代數(shù)里的字母,計(jì)算后得到的結(jié)果叫做代數(shù)式的值。3、 代數(shù)式的分類(lèi):._整式丿單項(xiàng)式代數(shù)式『理式 多項(xiàng)式分式■無(wú)理式二、 整式的有關(guān)概念及運(yùn)算1、概念單項(xiàng)式:像X、7、2x2y,這種數(shù)與字母的積叫做單項(xiàng)式。單獨(dú)一個(gè)數(shù)或字母也是單項(xiàng)式。單項(xiàng)式的次數(shù):一個(gè)單項(xiàng)式中,所有字母的指數(shù)叫做這個(gè)單項(xiàng)式的次數(shù)。單項(xiàng)式的系數(shù):?jiǎn)雾?xiàng)式中的數(shù)字因數(shù)叫單項(xiàng)式的系數(shù)。多項(xiàng)式:幾個(gè)單項(xiàng)式的和叫做多項(xiàng)式。多項(xiàng)式的項(xiàng):多項(xiàng)式中每一個(gè)單項(xiàng)式都叫多項(xiàng)式的項(xiàng)。一個(gè)多項(xiàng)式含有幾項(xiàng),就叫幾項(xiàng)式。多項(xiàng)式的次數(shù):多項(xiàng)式里,次數(shù)最高的項(xiàng)的次數(shù),就是這個(gè)多項(xiàng)式的次數(shù)。不含字母的項(xiàng)叫常數(shù)項(xiàng)。升(降)幕排列:把一個(gè)多項(xiàng)式按某一個(gè)字母的指數(shù)從?。ù螅┑酱螅ㄐ。┑捻樞蚺帕衅饋?lái),叫做把多項(xiàng)式按這個(gè)字母升(降)幕排列。(3)同類(lèi)項(xiàng):所含字母相同,并且相同字母的指數(shù)也分別相同的項(xiàng)叫做同類(lèi)項(xiàng)。2、運(yùn)算(1) 整式的加減:合并同類(lèi)項(xiàng):把同類(lèi)項(xiàng)的系數(shù)相加,所得結(jié)果作為系數(shù),字母及字母的指數(shù)不變。去括號(hào)法則:括號(hào)前面是“+”號(hào),把括號(hào)和它前面的“+”號(hào)去掉,括號(hào)里各項(xiàng)都不變;括號(hào)前面是“-”號(hào),把括號(hào)和它前面的“-”號(hào)去掉,括號(hào)里的各項(xiàng)都變號(hào)。添括號(hào)法則:括號(hào)前面是“+”號(hào),括到括號(hào)里的各項(xiàng)都不變;括號(hào)前面是“-”號(hào),括到括號(hào)里的各項(xiàng)都變號(hào)。整式的加減實(shí)際上就是合并同類(lèi)項(xiàng),在運(yùn)算時(shí),如果遇到括號(hào),先去括號(hào),再合并同類(lèi)項(xiàng)。(2) 整式的乘除:幕的運(yùn)算法則:其中mn都是正整數(shù)同底數(shù)幕相乘:aman=am'n;同底數(shù)幕相除:amfam』;幕的乘方:(am)n=amn積的乘方:(ab)n=anbn。單項(xiàng)式乘以單項(xiàng)式:用它們系數(shù)的積作為積的系數(shù),對(duì)于相同的字母,用它們的指數(shù)的和作為這個(gè)字母的指數(shù);對(duì)于只在一個(gè)單項(xiàng)式里含有的字母,則連同它的指數(shù)作為積的一個(gè)因式。單項(xiàng)式乘以多項(xiàng)式:就是用單項(xiàng)式去乘多項(xiàng)式的每一項(xiàng),再把所得的積相加。多項(xiàng)式乘以多項(xiàng)式:先用一個(gè)多項(xiàng)式的每一項(xiàng)乘以另一個(gè)多項(xiàng)式的每一項(xiàng),再把所得的積相加。單項(xiàng)除單項(xiàng)式:把系數(shù),同底數(shù)幕分別相除,作為商的因式,對(duì)于只在被除式里含有字母,則連同它的指數(shù)作為商的一個(gè)因式。多項(xiàng)式除以單項(xiàng)式:把這個(gè)多項(xiàng)式的每一項(xiàng)除以這個(gè)單項(xiàng),再把所得的商相加。乘法公式:平方差公式:(ab)(a-b)=a b+Jb b+Jb,_4ac b-yib2-4acax4-bx4-c=a(x+ )(x+ )2a 2a3、因式分解的一般步驟:如果多項(xiàng)式的各項(xiàng)有公因式,那么先提公因式;提出公因式或無(wú)公因式可提,再考慮可否運(yùn)用公式或十字相乘法;對(duì)二次三項(xiàng)式,應(yīng)先嘗試用十字相乘法分解,不行的再用求根公式法。最后考慮用分組分解法。四、 分式、分式定義:形如△的式子叫分式,其中A、B是整式,且BB中含有字母。分式無(wú)意義:B=0時(shí),分式無(wú)意義;B工0時(shí),分式有意義。完全平方公式:(ab)2二a22abb2,(a-b)2二a2-2abb2三、 因式分解、因式分解概念:把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式,叫因式分解。、常用的因式分解方法:提取公因式法:ma+mb+me=m(a+b+c)運(yùn)用公式法:平方差公式:a2-b2=(a?b)(a-b);完全平方公式:a2—2abb2=(a—b)2十字相乘法:x2(ab)xab=(xa)(xb)分組分解法:將多項(xiàng)式的項(xiàng)適當(dāng)分組后能提公因式或運(yùn)用公式分解。運(yùn)用求根公式法:若ax2?bx?c=O(a=0)的兩個(gè)根是X!、x?,則有:2axbx弋二3(乂一%)(乂一冷)即

(2) 分式的值為0:A=0,BM0時(shí),分式的值等于0。(3) 分式的約分:把一個(gè)分式的分子與分母的公因式約去叫做分式的約分。方法是把分子、分母因式分解,再約去公因式。(4) 最簡(jiǎn)分式:一個(gè)分式的分子與分母沒(méi)有公因式時(shí),叫做最簡(jiǎn)分式。分式運(yùn)算的最終結(jié)果若是分式,一定要化為最簡(jiǎn)分式。(5) 通分:把幾個(gè)異分母的分式分別化成與原來(lái)分式相等的同分母分式的過(guò)程,叫做分式的通分。(6) 最簡(jiǎn)公分母:各分式的分母所有因式的最高次幕的積。(7) 有理式:整式和分式統(tǒng)稱有理式。、分式的基本性質(zhì):(1)A=a-M(M是=0的整式);(2)△二「^(M是=0的整式)BBM BB-M(3)分式的變號(hào)法則:分式的分子,分母與分式本身的符號(hào),改變其中任何兩個(gè),分式的值不變。、分式的運(yùn)算:(1) 加、減:同分母的分式相加減,分母不變,分子相加減;異分母的分式相加減,先把它們通分成同分母的分式再相加減。(2) 乘:先對(duì)各分式的分子、分母因式分解,約分后再分子乘以分子,分母乘以分母。(3) 除:除以一個(gè)分式等于乘上它的倒數(shù)式。(4) 乘方:分式的乘方就是把分子、分母分別乘方。五、二次根式、二次根式的概念:式子..a(a—0)叫做二次根式。(1) 最簡(jiǎn)二次根式:被開(kāi)方數(shù)的因數(shù)是整數(shù),因式是整式,被開(kāi)方數(shù)中不含能開(kāi)得盡方的因式的二次根式叫最簡(jiǎn)二次根式。(2) 同類(lèi)二次根式:化為最簡(jiǎn)二次根式之后,被開(kāi)方數(shù)相同的二次根式,叫做同類(lèi)二次根式。(3) 分母有理化:把分母中的根號(hào)化去叫做分母有理化。(常(4) 有理化因式:把兩個(gè)含有二次根式的代數(shù)式相乘,如果它們的積不含有二次根式,我們就說(shuō)這兩個(gè)代數(shù)式互為有理化因式用的有理化因式有:與心;abcd與a;b-cd)(常、二次根式的性質(zhì):

(1)(掐r=a(az0);(1)(掐r=a(az0);(2)Ja2=a-a覚(3)恥宀b(a>0,b>0);⑷、運(yùn)算:二次根式的加減:將各二次根式化為最簡(jiǎn)二次根式后,合并同類(lèi)二次根式。二次根式的乘法: ab=ab(a>0,b>0)。二次根式的除法:''a=a(a_0,b_0)JbVb二次根式運(yùn)算的最終結(jié)果如果是根式,要化成最簡(jiǎn)二次根式。代數(shù)部分第三章:方程和方程組基礎(chǔ)知識(shí)點(diǎn):一、 方程有關(guān)概念、方程:含有未知數(shù)的等式叫做方程。、方程的解:使方程左右兩邊的值相等的未知數(shù)的值叫方程的解,含有一個(gè)未知數(shù)的方程的解也叫做方程的根。、解方程:求方程的解或方判斷方程無(wú)解的過(guò)程叫做解方程。、方程的增根:在方程變形時(shí),產(chǎn)生的不適合原方程的根叫做原方程的增根。二、 一元方程、一元一次方程一元一次方程的標(biāo)準(zhǔn)形式:ax+b=0(其中x是未知數(shù),a、b是已知數(shù),az0)一玩一次方程的最簡(jiǎn)形式:ax=b(其中x是未知數(shù),a、b是已知數(shù),az0)解一元一次方程的一般步驟:去分母、去括號(hào)、移項(xiàng)、合并同類(lèi)項(xiàng)和系數(shù)化為1。一元一次方程有唯一的一個(gè)解。、一元二次方程(1)一元二次方程的一般形式:ax2+bx+c=0(其中x是未知數(shù),a、b、c是已知數(shù),az0)—元二次方程的解法: 直接開(kāi)平方法、配方法、公式法、因式分解法—元二次方程解法的選擇順序是:先特殊后一般,如沒(méi)有要求,一般不用配方法。一元二次方程的根的判別式:也=b2—4ac當(dāng)4>0時(shí)方程有兩個(gè)不相等的實(shí)數(shù)根;當(dāng)厶=0時(shí)二方程有兩個(gè)相等的實(shí)數(shù)根;當(dāng)厶<0時(shí)=方程沒(méi)有實(shí)數(shù)根,無(wú)解;當(dāng)0時(shí)方程有兩個(gè)實(shí)數(shù)根—元二次方程根與系數(shù)的關(guān)系:若XiX是一兀二次方程ax2?bx?c=0的兩個(gè)根,那么:X!X2,X!X2竺a a以兩個(gè)數(shù)Xi,X2為根的一元二次方程(二次項(xiàng)系數(shù)為1)是:2x-(%x2)x片%=0三、 分式方程定義:分母中含有未知數(shù)的方程叫做分式方程。分式方程的解法:一般解法:去分母法,方程兩邊都乘以最簡(jiǎn)公分母。特殊方法:換元法。檢驗(yàn)方法:一般把求得的未知數(shù)的值代入最簡(jiǎn)公分母,使最簡(jiǎn)公分母不為0的就是原方程的根;使得最簡(jiǎn)公分母為0的就是原方程的增根,增根必須舍去,也可以把求得的未知數(shù)的值代入原方程檢驗(yàn)。四、 方程組、方程組的解:方程組中各方程的公共解叫做方程組的解。、解方程組:求方程組的解或判斷方程組無(wú)解的過(guò)程叫做解方程組、一次方程組:二元一次方程組:一般形式:恥° (a1,a2,b1,b2,G,C2不全為0)a2xb2y二c2解法:代入消遠(yuǎn)法和加減消元法解的個(gè)數(shù):有唯一的解,或無(wú)解,當(dāng)兩個(gè)方程相同時(shí)有無(wú)數(shù)的解。2)三元一次方程組:解法:代入消元法和加減消元法代數(shù)部分第四章:列方程(組)解應(yīng)用題知識(shí)點(diǎn):一、列方程(組)解應(yīng)用題的一般步驟1、審題:2、設(shè)未知數(shù);、找出相等關(guān)系,列方程(組);、解方程(組);、檢驗(yàn),作答;二、列方程(組)解應(yīng)用題常見(jiàn)類(lèi)型題及其等量關(guān)系;1、工程問(wèn)題(1)基本工作量的關(guān)系:工作量二工作效率X工作時(shí)間(2)常見(jiàn)的等量關(guān)系:甲的工作量+乙的工作量=甲、乙合作的工作總量(3)注意:工程問(wèn)題常把總工程看作“1”,水池注水問(wèn)題屬于工程問(wèn)題2、行程問(wèn)題(1)基本量之間的關(guān)系:路程=速度X時(shí)間(2)常見(jiàn)等量關(guān)系:相遇問(wèn)題:甲走的路程+乙走的路程=全路程追及問(wèn)題(設(shè)甲速度快):同時(shí)不同地:甲的時(shí)間二乙的時(shí)間;甲走的路程-乙走的路程二原來(lái)甲、乙相距路程同地不同時(shí):甲的時(shí)間二乙的時(shí)間-時(shí)間差;甲的路程二乙的路程3、水中航行問(wèn)題:順流速度=船在靜水中的速度+水流速度;逆流速度二船在靜水中的速度-水流速度4、增長(zhǎng)率問(wèn)題:常見(jiàn)等量關(guān)系:增長(zhǎng)后的量=原來(lái)的量+增長(zhǎng)的量;增長(zhǎng)的量=原來(lái)的量X(1+增長(zhǎng)率);5、數(shù)字問(wèn)題:基本量之間的關(guān)系:三位數(shù)二個(gè)位上的數(shù)+十位上的數(shù)x10+百位上的數(shù)X100代數(shù)部分第五章:不等式及不等式組知識(shí)點(diǎn):一、 不等式與不等式的性質(zhì)、不等式:表示不等關(guān)系的式子。(表示不等關(guān)系的常用符號(hào):工,<,>)。、不等式的性質(zhì):(l)不等式的兩邊都加上(或減去)同一個(gè)數(shù),不等號(hào)方向不改變,如a>b,c為實(shí)數(shù)=a+c>b+c(2) 不等式兩邊都乘以(或除以)同一個(gè)正數(shù),不等號(hào)方向不變,女口a>b,c>0~ac>be。(3) 不等式兩邊都乘以(或除以)同一個(gè)負(fù)數(shù),不等號(hào)方向改變,女口a>b,cv0-acvbc.注:在不等式的兩邊都乘以(或除以)一個(gè)實(shí)數(shù)時(shí),一定要養(yǎng)成好的習(xí)慣、就是先確定該數(shù)的數(shù)性(正數(shù),零,負(fù)數(shù))再確定不等號(hào)方向是否改變,不能像應(yīng)用等式的性質(zhì)那樣隨便,以防出錯(cuò)。、任意兩個(gè)實(shí)數(shù)a,b的大小關(guān)系(三種):(1) a-b>0=a>b(2) a—b=0=a=b(3) a-bv0二avb、(1)a>b>0二a、b(2)a>b>0=a2<b2二、 不等式(組)的解、解集、解不等式、能使一個(gè)不等式(組)成立的未知數(shù)的一個(gè)值叫做這個(gè)不等式(組)的一個(gè)解。不等式的所有解的集合,叫做這個(gè)不等式的解集。不等式組中各個(gè)不等式的解集的公共部分叫做不等式組的解集。.求不等式(組)的解集的過(guò)程叫做解不等式(組)。三、 不等式(組)的類(lèi)型及解法、一元一次不等式:(I)概念:含有一個(gè)未知數(shù)并且含未知數(shù)的項(xiàng)的次數(shù)是一次的不等式,叫做一元一次不等式。解法:與解一元一次方程類(lèi)似,但要特別注意當(dāng)不等式的兩邊同乘以(或除以)一個(gè)負(fù)數(shù)時(shí),不等號(hào)方向要改變。、一元一次不等式組:(I)概念:含有相同未知數(shù)的幾個(gè)一元一次不等式所組成的不等式組,叫做一元一次不等式組。(2)解法:先求出各不等式的解集,再確定解集的公共部分。注:求不等式組的解集一般借助數(shù)軸求解較方便。代數(shù)部分第六章:函數(shù)及其圖像知識(shí)點(diǎn):一、平面直角坐標(biāo)系1、平面內(nèi)有公共原點(diǎn)且互相垂直的兩條數(shù)軸,構(gòu)成平面直角坐標(biāo)系。在平面直角坐標(biāo)系內(nèi)的點(diǎn)和有序?qū)崝?shù)對(duì)之間建立了一一對(duì)應(yīng)的關(guān)系。、不同位置點(diǎn)的坐標(biāo)的特征:各象限內(nèi)點(diǎn)的坐標(biāo)有如下特征:點(diǎn)P(x,y)在第一象限二x>0,y>0;點(diǎn)P(x,y)在第二象限二xv0,y>0;點(diǎn)P(x,y)在第三象限二xv0,yv0;點(diǎn)P(x,y)在第四象限二x>0,yv0。坐標(biāo)軸上的點(diǎn)有如下特征:點(diǎn)P(x,y)在x軸上二y為0,x為任意實(shí)數(shù)。點(diǎn)P(x,y)在y軸上=x為0,y為任意實(shí)數(shù)。.點(diǎn)P(x,y)坐標(biāo)的幾何意義:點(diǎn)P(x,y)到x軸的距離是|y|;點(diǎn)P(x,y)到y(tǒng)袖的距離是|x|;點(diǎn)P(x,y)到原點(diǎn)的距離是.x2y2.關(guān)于坐標(biāo)軸、原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo)的特征:(1)點(diǎn)P(a,b)關(guān)于x軸的對(duì)稱點(diǎn)是R(a,-b);(2)點(diǎn)P(a,b)關(guān)于x軸的對(duì)稱點(diǎn)是P2(-a,b);(3)點(diǎn)P(a,b)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)是P(-a,-b);二、 函數(shù)的概念、常量和變量:在某一變化過(guò)程中可以取不同數(shù)值的量叫做變量;保持?jǐn)?shù)值不變的量叫做常量。、函數(shù):一般地,設(shè)在某一變化過(guò)程中有兩個(gè)變量x和y,如果對(duì)于x的每一個(gè)值,y都有唯一的值與它對(duì)應(yīng),那么就說(shuō)x是自變量,y是x的函數(shù)。(1)自變量取值范圍的確是:解析式是只含有一個(gè)自變量的整式的函數(shù),自變量取值范圍是全體實(shí)數(shù)。解析式是只含有一個(gè)自變量的分式的函數(shù),自變量取值范圍是使分母不為0的實(shí)數(shù)。解析式是只含有一個(gè)自變量的偶次根式的函數(shù), 自變量取值范圍是使被開(kāi)方數(shù)非負(fù)的實(shí)數(shù)。注意:在確定函數(shù)中自變量的取值范圍時(shí),如果遇到實(shí)際問(wèn)題,還必須使實(shí)際問(wèn)題有意義。(2) 函數(shù)值:給自變量在取值范圍內(nèi)的一個(gè)值所求得的函數(shù)的對(duì)應(yīng)值。(3) 函數(shù)的表示方法:①解析法;②列表法;③圖像法(4) 由函數(shù)的解析式作函數(shù)的圖像,一般步驟是:①列表;②描點(diǎn);③連線三、 幾種特殊的函數(shù)、一次函數(shù)解析式自變量的取泄范國(guó)習(xí)穩(wěn) '性質(zhì)一次kxO全賓+b(k^O)全體

實(shí)數(shù)當(dāng)*大當(dāng)K?、匐S增②隨減解析式自變量的取泄范國(guó)習(xí)穩(wěn) '性質(zhì)一次kxO全賓+b(k^O)全體

實(shí)數(shù)當(dāng)*大當(dāng)K?、匐S增②隨減k>oy的緡丸運(yùn)址疋0時(shí)y的增大而直線位置與k,b的關(guān)系:k>0直線向上的方向與x軸的正方向所形成的夾角為銳角;kv0直線向上的方向與x軸的正方向所形成的夾角為鈍角;b>0直線與y軸交點(diǎn)在x軸的上方;b=0直線過(guò)原點(diǎn);bv0直線與y軸交點(diǎn)在x軸的下方;2da<02、二次函數(shù)

2da<0c>0圖像與y軸交點(diǎn)在x軸上方;c=0二圖像過(guò)原點(diǎn);c<0=圖像與y軸交點(diǎn)在x軸下方;(3)a,b決定拋物線對(duì)稱軸的位置:a,b同號(hào),對(duì)稱軸在y軸左側(cè);b=0,對(duì)稱軸是y軸;a,b異號(hào)。對(duì)稱軸在y軸右側(cè);4、正比例函數(shù)與反比例函數(shù)的對(duì)照表:函數(shù)正比例函數(shù)反比例函數(shù)解析式y(tǒng)=的工0)y=^(ft#0)圖像直線,銓過(guò)原點(diǎn)雙曲踐,與坐標(biāo)軸沒(méi)有交慮自變量取值范圍全體實(shí)數(shù)工定0的一切/數(shù)圖像的位置當(dāng)心D時(shí),在一、三集限:當(dāng)直<0時(shí),在二問(wèn)象磯當(dāng)心0時(shí)’在一、三象限*當(dāng)去<0時(shí),奩二、四象限。性質(zhì)當(dāng)時(shí)疔隨玄增大而增大;當(dāng)kvO時(shí)隨加的增大而減小?當(dāng)A>0時(shí),丁隨鼻危大而減不;當(dāng)i<0v隨兀增大而増去°代數(shù)部分第七章:統(tǒng)計(jì)初步知識(shí)點(diǎn):一、 總體和樣本:在統(tǒng)計(jì)時(shí),我們把所要考察的對(duì)象的全體叫做總體,其中每一考察對(duì)象叫做個(gè)體。從總體中抽取的一部分個(gè)體叫做總體的一個(gè)樣本,樣本中個(gè)體的數(shù)目叫做樣本容量。二、 反映數(shù)據(jù)集中趨勢(shì)的特征數(shù)、平均數(shù)

(1)Xi,x2,x3,…,xn的平均數(shù),X=l(Xi*X2亠?亠Xn)n(2)加權(quán)平均數(shù):如果n個(gè)數(shù)據(jù)中,Xi出現(xiàn)fi次,X2出現(xiàn)f2次,,Xk出現(xiàn)fk次(這里f< f^n),則—1X=—(XifiX2f21 _Xkfk)n(3)平均數(shù)的簡(jiǎn)化計(jì)算:當(dāng)一組數(shù)據(jù)Xi,X2,X3,…,xn中各數(shù)據(jù)的數(shù)值較大,并且都與常數(shù)a接近時(shí),設(shè)X,-a,X2-a,X3-a,…,:x—-a的平均數(shù)為門(mén)則:x=x'a。、中位數(shù):將一組數(shù)據(jù)接從小到大的順序排列,處在最中間位置上的數(shù)據(jù)叫做這組數(shù)據(jù)的中位數(shù),如果數(shù)據(jù)的個(gè)數(shù)為偶數(shù)中位數(shù)就是處在中間位置上兩個(gè)數(shù)據(jù)的平均數(shù)。、眾數(shù):在一組數(shù)據(jù)中,出現(xiàn)次數(shù)最多的數(shù)據(jù)叫做這組數(shù)據(jù)的眾數(shù)。一組數(shù)據(jù)的眾數(shù)可能不止一個(gè)。三、反映數(shù)據(jù)波動(dòng)大小的特征數(shù):、方差:222(I)xxx.?x的方差 S2_(Xi-X)+(X2-X)i+(Xn-X)n22X^ X— -2- --X(X,,X2,X3,n22X^ X— -2- --X(X,,X2,X3,…,X—為較n2X2X—(2)簡(jiǎn)化計(jì)算公式:S2=生小的整數(shù)時(shí)用這個(gè)公式要比較方便)(3)記Xi,X2,X3/,x—的方差為s2,設(shè)a為常數(shù),Xi-a,X2-ax-a,,x—-a的方差為s、2,則S2=S'2。注:當(dāng)Xi,X2,X3/,X—各數(shù)據(jù)較大而常數(shù)a較接近時(shí),用該法計(jì)算方差較簡(jiǎn)便。四、頻率分布、有關(guān)概念分組:將一組數(shù)據(jù)按照統(tǒng)一的標(biāo)準(zhǔn)分成若干組稱為分組,當(dāng)數(shù)據(jù)在i00個(gè)以內(nèi)時(shí),通常分成5-i2組。頻數(shù):每個(gè)小組內(nèi)的數(shù)據(jù)的個(gè)數(shù)叫做該組的頻數(shù)。各個(gè)小組的頻數(shù)之和等于數(shù)據(jù)總數(shù)n。頻率:每個(gè)小組的頻數(shù)與數(shù)據(jù)總數(shù)n的比值叫做這一小組的頻率,各小組頻率之和為I。(4)頻率分布表:將一組數(shù)據(jù)的分組及各組相應(yīng)的頻數(shù)、頻率所列成的表格叫做頻率分布表。(5)頻率分布直方圖:將頻率分布表中的結(jié)果,繪制成的,以數(shù)據(jù)的各分點(diǎn)為橫坐標(biāo),以頻率除以組距為縱坐標(biāo)的直方圖,叫做頻率分布直方圖。圖中每個(gè)小長(zhǎng)方形的高等于該組的頻率除以組距。每個(gè)小長(zhǎng)方形的面積等于該組的頻率。所有小長(zhǎng)方形的面積之和等于各組頻率之和等于1。樣本的頻率分布反映樣本中各數(shù)據(jù)的個(gè)數(shù)分別占樣本容量n的比例的大小,總體分布反映總體中各組數(shù)據(jù)的個(gè)數(shù)分別在總體中所占比例的大小,一般是用樣本的頻率分布去估計(jì)總體的頻率分布。、研究頻率分布的方法;得到一數(shù)據(jù)的頻率分布和方法,通常是先整理數(shù)據(jù),后畫(huà)出頻率分布直方圖,其步驟是:(1)計(jì)算最大值與最小值的差;(2)決定組距與組數(shù);(3)決定分點(diǎn);(4)列領(lǐng)率分布表;(5)繪頻率分布直方圖。幾何部分第一章:線段、角、相交線、平行線知識(shí)點(diǎn):一、直線:直線是幾何中不加定義的基本概念,直線的兩大特征是“直”和“向兩方無(wú)限延伸”。二、直線的性質(zhì):經(jīng)過(guò)兩點(diǎn)有一條直線,并且只有一條直線,直線的這條性質(zhì)是以公理的形式給出的,可簡(jiǎn)述為:過(guò)兩點(diǎn)有且只有一條直線,兩直線相交,只有一個(gè)交點(diǎn)。三、射線:1、射線的定義:直線上一點(diǎn)和它們的一旁的部分叫做射線。.射線的特征:“向一方無(wú)限延伸,它有一個(gè)端點(diǎn)?!彼?、線段:、線段的定義:直線上兩點(diǎn)和它之間的部分叫做線段,這兩點(diǎn)叫做線段的端點(diǎn)。、線段的性質(zhì)(公理):所有連接兩點(diǎn)的線中,線段最短。五、線段的中點(diǎn):、定義如圖1一1中,點(diǎn)B把線段AC分成兩條相等的線段,點(diǎn)B叫做線段圖1-1AC的中點(diǎn)?!?』 I ■、表示法:?/AB=BC???點(diǎn)B為AC的中點(diǎn)或TAB=1MAC2???點(diǎn)B為AC的中點(diǎn),或TAC=2AB???點(diǎn)B為AC的中點(diǎn)反之也成立???點(diǎn)B為AC的中點(diǎn),二AB=BC或???點(diǎn)B為AC的中點(diǎn),?AB=丄AC2或???點(diǎn)B為AC的中點(diǎn),?AC=2BC六、角1、角的兩種定義:一種是有公共端點(diǎn)的兩條射線所組成的圖形叫做角。要弄清定義中的兩個(gè)重點(diǎn)①角是由兩條射線組成的圖形;②R圖1一2R圖1一2.角的平分線定義:一條射線把一個(gè)角分成兩個(gè)相等的角,這條射線叫做這個(gè)角的平分線。表示法有三種:如圖 1—2ZAOC=ZBOCZAOB=2/AOC=2/COBZAOC=ZCOB丄/AOB2七、 角的度量:度量角的大小,可用“度”作為度量單位。把一個(gè)圓周分成360等份,每一份叫做一度的角。1度=60分;1分=60秒。八、 角的分類(lèi):銳角:小于直角的角叫做銳角直角:平角的一半叫做直角鈍角:大于直角而小于平角的角平角:把一條射線,繞著它的端點(diǎn)順著一個(gè)方向旋轉(zhuǎn),當(dāng)終止位置和起始位置成一直線時(shí),所成的角叫做平角。周角:把一條射線,繞著它的端點(diǎn)順著一個(gè)方向旋轉(zhuǎn),當(dāng)終邊和始邊重合時(shí),所成的角叫做周角。(6)周角、平角、直角的關(guān)系是:l周角=2平角=4直角=360°九、相關(guān)的角:1、對(duì)頂角:一個(gè)角的兩邊分別是另一個(gè)角的兩邊的反向延長(zhǎng)線,這兩個(gè)角叫做對(duì)頂角。2、互為補(bǔ)角:如果兩個(gè)角的和是一個(gè)平角,這兩個(gè)角做互為補(bǔ)角。、互為余角:如果兩個(gè)角的和是一個(gè)直角,這兩個(gè)角叫做互為余角。、鄰補(bǔ)角:有公共頂點(diǎn),一條公共邊,另兩條邊互為反向延長(zhǎng)線的兩個(gè)角做互為鄰補(bǔ)角。注意:互余、互補(bǔ)是指兩個(gè)角的數(shù)量關(guān)系,與兩個(gè)角的位置無(wú)關(guān),而互為鄰補(bǔ)角則要求兩個(gè)角有特殊的位置關(guān)系。十、角的性質(zhì)1、對(duì)頂角相等。2、同角或等角的余角相等。、同角或等角的補(bǔ)角相等。十一、相交線1、斜線:兩條直線相交不成直角時(shí),其中一條直線叫做另一條直線的斜線。它們的交點(diǎn)叫做斜足。2、兩條直線互相垂直:當(dāng)兩條直線相交所成的四個(gè)角中,有一個(gè)角是直角時(shí),就說(shuō)這兩條直線互相垂直。、垂線:當(dāng)兩條直線互相垂直時(shí),其中的一條直線叫做另一條直線的垂線,它們的交點(diǎn)叫做垂足。、垂線的性質(zhì)(l)過(guò)一點(diǎn)有且只有一條直線與己知直線垂直。(2)直線外一點(diǎn)與直線上各點(diǎn)連結(jié)的所有線段中,垂線段最短。簡(jiǎn)單說(shuō):垂線段最短。十二、距離、兩點(diǎn)的距離:連結(jié)兩點(diǎn)的線段的長(zhǎng)度叫做兩點(diǎn)的距離。2、從直線外一點(diǎn)到這條直線的垂線段的長(zhǎng)度叫做點(diǎn)到直線的距離。、兩條平行線的距離:兩條直線平行,從一條直線上的任意一點(diǎn)向另一條直線引垂線,垂線段的長(zhǎng)度,叫做兩條平行線的距離。說(shuō)明:點(diǎn)到直線的距離和平行線的距離實(shí)際上是兩個(gè)特殊點(diǎn)之間的距離,它們與點(diǎn)到直線的垂線段是分不開(kāi)的。十三、平行線1、定義:在同一平面內(nèi),不相交的兩條直線叫做平行線。、平行公理:經(jīng)過(guò)直線外一點(diǎn),有且只有一條直線與這條直線平行。、平行公理的推論:如果兩條直線都和第三條直線平行,那么這兩條直線也互相平行。說(shuō)明:也可以說(shuō)兩條射線或兩條線段平行,這實(shí)際上是指它們所在的直線平行。、平行線的判定:(1)同位角相等,兩直線平行。(2)內(nèi)錯(cuò)角相等,兩直線平行。(3)同旁內(nèi)角互補(bǔ),兩直線平行。、平行線的性質(zhì)(1)兩直線平行,同位角相等。(2)兩直線平行,內(nèi)錯(cuò)角相等。(3)兩直線平行,同旁內(nèi)角互補(bǔ)。說(shuō)明:要證明兩條直線平行,用判定公理(或定理)在已知條件中有兩條直線平行時(shí),則應(yīng)用性質(zhì)定理。、如果一個(gè)角的兩邊分別平行于另一個(gè)角的兩邊,那么這兩個(gè)角相等或互補(bǔ)。注意:當(dāng)角的兩邊平行且方向相同(或相反)時(shí),這兩個(gè)角相等。當(dāng)角的兩邊平行且一邊方向相同另一方向相反時(shí),這兩個(gè)角互補(bǔ)。幾何部分第二章:三角形知識(shí)點(diǎn):一、關(guān)于三角形的一些概念由不在同一條直線上的三條線段首尾順次相接所組成的圖形叫做三角形。組成三角形的線段叫三角形的邊;相鄰兩邊的公共端點(diǎn)叫三角形的頂點(diǎn);相鄰兩邊所組成的角叫三角形的內(nèi)角,簡(jiǎn)稱三角形的角。

、三角形的角平分線。三角形的角平分線是一條線段(頂點(diǎn)與內(nèi)角平分線和對(duì)邊交線間的距離)、三角形的中線三角形的中線也是一條線段(頂點(diǎn)到對(duì)邊中點(diǎn)間的距離).三角形的高三角形的高線也是一條線段(頂點(diǎn)到對(duì)邊的距離)注意:三角形的中線和角平分線都在三角形內(nèi)。如圖2—I,AD、BE、CF都是么ABC的角平分線,它們都在△ABC內(nèi)如圖2—2,ADBE、CF都是△ABC的中線,它們都在△ABC內(nèi)而圖2—3,說(shuō)明咼線不一定在△ABC內(nèi),圖2—3—(1)2—3一(3)圖2—3—(1),中三條高線都在厶ABC內(nèi),圖2—3—(2),中高線CD在△ABC內(nèi),而高線AC與BC是三角形的邊;圖2—3一(3),中高線BE在△ABC內(nèi),而高線AD。尸在厶ABC三、三角形三條邊的關(guān)系三角形三邊都不相等,叫不等邊三角形;有兩條邊相等的叫等腰

三角形;三邊都相等的則叫等邊三角形。等腰三角形中,相等的兩條邊叫腰,另一邊叫底邊,腰和底邊的夾角叫底角,兩腰的夾角叫項(xiàng)角。三角形接邊相等關(guān)系來(lái)分類(lèi):三角形三角形*等腰三角形丿'底邊和腰不相等的等腰三角形三角形*等腰三角形丿'底邊和腰不相等的等腰I等邊三角形推論三角形兩邊的差小于第三邊。三角形不符合定理的三條線段,不能組成三角形的三邊。例如三條線段長(zhǎng)分別為5,6,1人因?yàn)?+6V12,所以這三條線段,不能作為三角形的三邊。三、三角形的內(nèi)角和定理三角形三個(gè)內(nèi)角的和等于180由定理可知,三角形的二個(gè)角已知,那么第三角可以由定理求得。如已知△ABC的兩個(gè)角為/A=90°,/B=40°,則/C=180°-90°-40°=50°由定理可以知道,三角形的三個(gè)內(nèi)角中,只可能有一個(gè)內(nèi)角是直角或鈍角。推論1:直角三角形的兩個(gè)銳角互余。三角形按角分類(lèi):直角三角形三角形<小一缶毎;銳角三角形斜三角形丿“宀…鈍角三角形用集合表示,見(jiàn)圖

三角形一邊與另一邊的延長(zhǎng)線組成的角,叫三角形的外角。推論2:三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和推論3:三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角例如圖2—6三角形一邊與另一邊的延長(zhǎng)線組成的角,叫三角形的外角。推論2:三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和/1>/3;Z1=Z3+/4;/5>Z3+/8;Z5/3+/7+/8;/2>/8;/2=/7+/8;/4>/9;/4=/9+/10等等。四、全等三角形O能夠完全重合的兩個(gè)圖形叫全等形。O兩個(gè)全等三角形重合時(shí),互相重合的頂點(diǎn)叫對(duì)應(yīng)頂點(diǎn),互相重合的邊叫對(duì)應(yīng)邊,互相重合的角叫對(duì)應(yīng)角?!鰽BC^A△ABC^AA'B'C'表示A和A',B和B',C和C'是對(duì)應(yīng)點(diǎn)全等三角形的對(duì)應(yīng)邊相等;全等三角形的對(duì)應(yīng)角相等。如圖2—7,AABC^AA'B'C',則有A、B、C的對(duì)應(yīng)點(diǎn)A'、B'、C';ABBGCA勺對(duì)應(yīng)邊是A'B'、B'C'、C'A'。/A,/B,/C的對(duì)應(yīng)角是/A'、/B'、/C'。???AB=A'B',BC=B'C',CA=C'A';/A=/A',/B=/B',/C=/C'五、全等三角形的判定、邊角邊公理:有兩邊和它們的夾角對(duì)應(yīng)相等的兩個(gè)三角形全等(可以簡(jiǎn)寫(xiě)成“邊角邊”或“SAS”)注意:一定要是兩邊夾角,而不能是邊邊角。、角邊角公理:有兩角和它們的夾邊對(duì)應(yīng)相等的兩個(gè)三角形全等(可以簡(jiǎn)寫(xiě)成“角邊角“或“ASA”)、推論有兩角和其中一角的對(duì)邊對(duì)應(yīng)相等的兩個(gè)三角形全等(可以簡(jiǎn)寫(xiě)成“角角邊'域“AAS”)、邊邊邊公理有三邊對(duì)應(yīng)相等的兩個(gè)三角形全等(可以簡(jiǎn)寫(xiě)成“邊邊邊”或“SSS”)由邊邊邊公理可知,三角形的重要性質(zhì):三角形的穩(wěn)定性。除了上面的判定定理外,“邊邊角”或“角角角”都不能保證兩個(gè)三角形全等。、直角三角形全等的判定:斜邊、直角邊公理有斜邊和一條直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等(可以簡(jiǎn)寫(xiě)成“斜邊,直角邊”或“HL')六、角的平分線定理1、在角的平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等。定理2、一個(gè)角的兩邊的距離相等的點(diǎn),在這個(gè)角的平分線上。由定理1、2可知:角的平分線是到角的兩邊距離相等的所有點(diǎn)的集合??梢宰C明三角形內(nèi)存在一個(gè)點(diǎn),它到三角形的三邊的距離相等這個(gè)點(diǎn)就是三角形的三條角平分線的交點(diǎn)(交于一點(diǎn))在兩個(gè)命題中,如果第一個(gè)命題的題設(shè)是第二個(gè)命題的結(jié)論,而第一個(gè)命題的結(jié)論又是第二個(gè)命題的題設(shè),那么這兩個(gè)命題叫做互為逆命題,如果把其中的一個(gè)做原命題,那么另一個(gè)叫它的逆命題。如果一個(gè)定理的逆命題經(jīng)過(guò)證明是真命題,那么它也是一個(gè)定理,這兩個(gè)定理叫互逆定理,其中一個(gè)叫另一個(gè)的逆定理。例如:“兩直線平行,同位角相等'和“同位角相等,兩直線平行'是互逆定理。一個(gè)定理不一定有逆定理,例如定理:“對(duì)頂角相等'就沒(méi)逆定理,因?yàn)椤跋嗟鹊慕鞘菍?duì)頂角'這是一個(gè)假命顆。七、基本作圖限定用直尺和圓規(guī)來(lái)畫(huà)圖,稱為尺規(guī)作網(wǎng)—最基本、最常用的尺規(guī)作圖.通常稱為基本作圖,例如做一條線段等于己知線段。1、 作一個(gè)角等于已知角:作法是使三角形全等(SSS,從而得到對(duì)應(yīng)角相等;2、 平分已知角:作法仍是使三角形全等(SSS.從而得到對(duì)應(yīng)角相等。3、 經(jīng)過(guò)一點(diǎn)作已知直線的垂線:(1)若點(diǎn)在已知直線上,可看作是平分已知角平角;(2)若點(diǎn)在已知直線外,可用類(lèi)似平分已知角的方法去做:已知點(diǎn)C為圓心,適當(dāng)長(zhǎng)為半徑作弧交已知真線于A、B兩點(diǎn),再以A、B為圓心,用相同的長(zhǎng)為半徑分別作弧交于D點(diǎn),連結(jié)CD即為所求垂線。4、 作線段的垂直平分線:線段的垂直平分線也叫中垂線。做法的實(shí)質(zhì)仍是全等三角形(SSS)。也可以用這個(gè)方法作線段的中點(diǎn)。八、 作圖題舉例重要解決求作三角形的問(wèn)題、已知兩邊一夾角,求作三角形2、已知底邊上的高,求作等腰三角形九、 等腰三角形的性質(zhì)定理等腰三角形的性質(zhì)定理:等腰三角形的兩個(gè)底角相等(簡(jiǎn)寫(xiě)成“等邊對(duì)等角”)推論1:等腰三角形頂角的平分線平分底邊并且垂直于底邊,就是說(shuō):等腰三角形的頂角的平分線、底邊上的中線、底邊上的高互相重合。推論2:等邊三角形的各角都相等,并且每一個(gè)角都等于60°例如:等腰三角形底邊中線上的任一點(diǎn)到兩腰的距離相等,因?yàn)榈妊切蔚走呏芯€就是頂角的角平分線、而角平分線上的點(diǎn)到角的兩邊距離相等n十、等腰三角形的判定定理:如果一個(gè)三角形有兩個(gè)角相,那這兩個(gè)角所對(duì)的兩條邊也相等。(簡(jiǎn)寫(xiě)成“等角對(duì)等動(dòng)”)。推論1:三個(gè)角都相等的三角形是等邊三角形推論2:有一個(gè)角等于60°的等腰三角形是等邊三角形推論3:在直角三角形中,如果一個(gè)銳角等于30°,那么它所對(duì)的直角邊等于斜邊的一半。十一、線段的垂直平分線定理:線段垂直平分線上的點(diǎn)和這條線段兩個(gè)端點(diǎn)的距離相等逆定理:和一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上。就是說(shuō):線段的垂直平分線可以看作是和線段兩個(gè)端點(diǎn)距離相等的所有點(diǎn)的集合。十二、軸對(duì)稱和軸對(duì)稱圖形把一個(gè)圖形沿著某一條直線折疊二如果能夠與另一個(gè)圖形重合,那么就說(shuō)這兩個(gè)圖形關(guān)于這條直線軸對(duì)稱,兩個(gè)圖形中的對(duì)應(yīng)點(diǎn)叫關(guān)于這條直線的對(duì)稱點(diǎn),這條直線叫對(duì)稱軸。兩個(gè)圖形關(guān)于直線對(duì)稱也叫軸對(duì)稱。定理1:關(guān)于某條直線對(duì)稱的兩個(gè)圖形是全等形。定理2:如果兩個(gè)圖形關(guān)于某條直線對(duì)稱,那么對(duì)稱軸是對(duì)應(yīng)點(diǎn)連線的垂直平分線。定理3:兩個(gè)圖形關(guān)于某條直線對(duì)稱,如果它們的對(duì)應(yīng)線段或延長(zhǎng)相交。那么交點(diǎn)在對(duì)稱軸上。逆定理:如果兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線被一條直線垂直平分, 那么這兩個(gè)圖形關(guān)于這條直線對(duì)稱。如果一個(gè)圖形沿著一條直線折疊,直線兩旁的部分能夠互相重合,那么這個(gè)圖形叫做軸對(duì)稱圖形,這條直線就是對(duì)稱軸。例如:等腰三角形頂角的分角線就具有上面所述的特點(diǎn),所以等腰三角形頂角的分角線是等腰三角形的一條對(duì)稱軸,而等腰三角形是軸對(duì)稱圖形。十三、勾股定理勾股定理:直角三角形兩直角邊a、b的平方和等于斜邊c的平方:a2b2c勾股定理的逆定理:如果三角形的三邊長(zhǎng)a、b、c有下面關(guān)系:a2b2c2那么這個(gè)三角形是直角三角形幾何部分第三章:四邊形知識(shí)點(diǎn):一、 多邊形、多邊形:由一些線段首尾順次連結(jié)組成的圖形,叫做多邊形。、多邊形的邊:組成多邊形的各條線段叫做多邊形的邊。、多邊形的頂點(diǎn):多邊形每相鄰兩邊的公共端點(diǎn)叫做多邊形的頂點(diǎn)。、多邊形的對(duì)角線:連結(jié)多邊形不相鄰的兩個(gè)頂點(diǎn)的線段叫做多邊形的對(duì)角線。、多邊形的周長(zhǎng):多邊形各邊的長(zhǎng)度和叫做多邊形的周長(zhǎng)。、凸多邊形:把多邊形的任何一條邊向兩方延長(zhǎng),如果多邊形的其他各邊都在延長(zhǎng)線所得直線的問(wèn)旁,這樣的多邊形叫凸多邊形。說(shuō)明:一個(gè)多邊形至少要有三條邊,有三條邊的叫做三角形;有四條邊的叫做四邊形;有幾條邊的叫做幾邊形。今后所說(shuō)的多邊形,如果不特別聲明,都是指凸多邊形。、多邊形的角:多邊形相鄰兩邊所組成的角叫做多邊形的內(nèi)角,簡(jiǎn)稱多邊形的角。、多邊形的外角:多邊形的角的一邊與另一邊的反向延長(zhǎng)線所組成的角叫做多邊形的外角。注意:多邊形的外角也就是與它有公共頂點(diǎn)的內(nèi)角的鄰補(bǔ)角。、n邊形的對(duì)角線共有2n(n-3)條。2說(shuō)明:利用上述公式,可以由一個(gè)多邊形的邊數(shù)計(jì)算出它的對(duì)角線的條數(shù),也可以由一個(gè)多邊形的對(duì)角線的條數(shù)求出它的邊數(shù)。、多邊形內(nèi)角和定理:n邊形內(nèi)角和等于(n—2)180°。、多邊形內(nèi)角和定理的推論:n邊形的外角和等于360°。說(shuō)明:多邊形的外角和是一個(gè)常數(shù)(與邊數(shù)無(wú)關(guān)),利用它解決有關(guān)計(jì)算題比利用多邊形內(nèi)角和公式及對(duì)角線求法公式簡(jiǎn)單。 無(wú)論用哪個(gè)公式解決有關(guān)計(jì)算,都要與解方程聯(lián)系起來(lái),掌握計(jì)算方法。二、 平行四邊形、平行四邊形:兩組對(duì)邊分別平行的四邊形叫做平行四邊形。、平行四邊形性質(zhì)定理1:平行四邊形的對(duì)角相等。、平行四邊形性質(zhì)定理2:平行四邊形的對(duì)邊相等。、平行四邊形性質(zhì)定理2推論:夾在平行線間的平行線段相等。、平行四邊形性質(zhì)定理3:平行四邊形的對(duì)角線互相平分。、平行四邊形判定定理1:一組對(duì)邊平行且相等的四邊形是平行四邊形。、平行四邊形判定定理2:兩組對(duì)邊分別相等的四邊形是平行四邊形。、平行四邊形判定定理3:對(duì)角線互相平分的四邊形是平行四邊形。、平行四邊形判定定理4:兩組對(duì)角分別相等的四邊形是平行四邊形。說(shuō)明:(1)平行四邊形的定義、性質(zhì)和判定是研究特殊平行四邊形的基礎(chǔ)。同時(shí)又是證明線段相等,角相等或兩條直線互相平行的重要方法。(2)平行四邊形的定義即是平行四邊形的一個(gè)性質(zhì),又是平行四邊形的一個(gè)判定方法。三、矩形矩形是特殊的平行四邊形,從運(yùn)動(dòng)變化的觀點(diǎn)來(lái)看,當(dāng)平行四邊形的一個(gè)內(nèi)角變?yōu)?0°時(shí),其它的邊、角位置也都隨之變化。因此矩形的性質(zhì)是在平行四邊形的基礎(chǔ)上擴(kuò)充的。、矩形:有一個(gè)角是直角的平行四邊形叫做短形(通常也叫做長(zhǎng)方形)、矩形性質(zhì)定理1:矩形的四個(gè)角都是直角。.矩形性質(zhì)定理2:矩形的對(duì)角線相等。、矩形判定定理1:有三個(gè)角是直角的四邊形是矩形。說(shuō)明:因?yàn)樗倪呅蔚膬?nèi)角和等于360度,已知有三個(gè)角都是直角,那么第四個(gè)角必定是直角。、矩形判定定理2:對(duì)角線相等的平行四邊形是矩形。說(shuō)明:要判定四邊形是矩形的方法是:法一:先證明出是平行四邊形,再證出有一個(gè)直角(這是用定義證明)法二:先證明出是平行四邊形,再證出對(duì)角線相等(這是判定定理1)法三:只需證出三個(gè)角都是直角。(這是判定定理2)四、菱形菱形也是特殊的平行四邊形,當(dāng)平行四邊形的兩個(gè)鄰邊發(fā)生變化時(shí),即當(dāng)兩個(gè)鄰邊相等時(shí),平行四邊形變成了菱形。、菱形:有一組鄰邊相等的平行四邊形叫做菱形。、菱形的性質(zhì)1:菱形的四條邊相等。、菱形的性質(zhì)2:菱形的對(duì)角線互相垂直,并且每一條對(duì)角線平分一組對(duì)角。、菱形判定定理1:四邊都相等的四邊形是菱形。、菱形判定定理2:對(duì)角線互相垂直的平行四邊形是菱形。說(shuō)明:要判定四邊形是菱形的方法是:法一:先證出四邊形是平行四邊形,再證出有一組鄰邊相等。(這就是定義證明)。法二:先證出四邊形是平行四邊形,再證出對(duì)角線互相垂直。(這是判定定理2)法三:只需證出四邊都相等。(這是判定定理1)(五)正方形正方形是特殊的平行四邊形,當(dāng)鄰邊和內(nèi)角同時(shí)運(yùn)動(dòng)時(shí),又能使平行四邊形的一個(gè)內(nèi)角為直角且鄰邊相等,這樣就形成了正方形。、正方形:有一組鄰邊相等并且有一個(gè)角是直角的平行四邊形叫做正方形。、正方形性質(zhì)定理1:正方形的四個(gè)角都是直角,四條邊都相等。、正方形性質(zhì)定理2:正方形的兩條對(duì)角線相等,并且互相垂直平分,每條對(duì)角線平分一組對(duì)角。、正方形判定定理互:兩條對(duì)角線互相垂直的矩形是正方形。、正方形判定定理2:兩條對(duì)角線相等的菱形是正方形。注意:要判定四邊形是正方形的方法有方法一:第一步證出有一組鄰邊相等;第二步證出有一個(gè)角是直角;第三步證出是平行四邊形。(這是用定義證明)方法二:第一步證出對(duì)角線互相垂直;第二步證出是矩形。(這是判定定理1)方法三:第一步證出對(duì)角線相等;第二步證出是菱形。(這是判定定理2)六、中位線、三角形的中位線連結(jié)三角形兩邊中點(diǎn)的線段叫做三角形的中位線。說(shuō)明:三角形的中位線與三角形的中線不同。、梯形的中位線:連結(jié)梯形兩腰中點(diǎn)的線段叫做梯形中位線。、三角形中位線定理:三角形的中位線平行于第三邊,并且等于第三邊的一半。七、多邊形的面積說(shuō)明:多邊形的面積常用的求法有:注三解S=?(a.+6+c)*為三甬旳的三迪M為心迪上聞高:4為噸牧《S=ofca為迦匕h的S,正方涉5=a 將任意一個(gè)平面圖形劃分為若干部分再通過(guò)求部分的面積的和,求出原來(lái)圖形的面積這種方法叫做分割法。如圖 3—1 將任意一個(gè)平面圖形劃分為若干部分再通過(guò)求部分的面積的和,求出原來(lái)圖形的面積這種方法叫做分割法。如圖 3—1,作六邊形的最長(zhǎng)的一條對(duì)角線,從其它各頂點(diǎn)向這條對(duì)角線引垂線,把六邊形分成四個(gè)直角三角形和兩個(gè)直角梯形,計(jì)算它們的面積再相加。 將一個(gè)平面圖形的某一部分割下來(lái)移放在另一個(gè)適當(dāng)?shù)奈恢蒙?,從而改變?cè)瓉?lái)圖形的形狀。利用計(jì)算變形后的圖形的面積來(lái)求原圖形的面積的這種方法。叫做割補(bǔ)法?!猘為$匚血d為過(guò)長(zhǎng)M為Q邊.二的高° 菱形$二ah為對(duì)角踐址M為邊牧M為應(yīng)邊上的S=S-^rrr\h2mb為前厲卡」為気用為申儻栽止多邊彥S*nrr為過(guò)也眾呼為周蒼一半匚(3)將一個(gè)平面圖形通過(guò)拼補(bǔ)某一圖形,使它變?yōu)榱硪粋€(gè)圖形,利用新的圖形減去所補(bǔ)充圖形的面積,來(lái)求出原來(lái)圖形面積的這種方法叫做拼湊法。注意:兩個(gè)圖形全等,它們的面積相等。等底等高的三角面積相等。一個(gè)圖形的面積等于它的各部分面積的和。幾何部分第四章:相似形知識(shí)點(diǎn):一、比例線段1、比:選用同一長(zhǎng)度單位量得兩條線段。a、b的長(zhǎng)度分別是mn,那么就說(shuō)這兩條線段的比是a:b=mn(或衛(wèi)=巴)bn、比的前項(xiàng),比的后項(xiàng):兩條線段的比a:b中。a叫做比的前項(xiàng),b叫做比的后項(xiàng)。說(shuō)明:求兩條線段的比時(shí),對(duì)這兩條線段要用同一單位長(zhǎng)度。、比例:兩個(gè)比相等的式子叫做比例,女口-bd、比例外項(xiàng):在比例a=c(或a:b=c:d)中a、d叫做比例bd外項(xiàng)。、比例內(nèi)項(xiàng):在比例a=c(或a:b=c:d)中b、c叫做比例bd內(nèi)項(xiàng)。、第四比例項(xiàng):在比例a=—(或a:b=c:d)中,d叫a、b、bdC的第四比例項(xiàng)。、比例中項(xiàng):如果比例中兩個(gè)比例內(nèi)項(xiàng)相等,即比例為a」(或baa:b=b:c時(shí),我們把b叫做a和d的比例中項(xiàng)。、比例線段:在四條線段中,如果其中兩條線段的比等于另外兩條線段的比,那么,這四條線段叫做成比例線段,簡(jiǎn)稱比例線段。、比例的基本性質(zhì):如果a:b=c:d那么ad=bc逆命題也成立,即如果ad=be,那么a:b=c:d、比例的基本性質(zhì)推論:如果a:b=b:d那么b2=ad,逆定理是如果b2=ad那么a:b=b:c。說(shuō)明:兩個(gè)論是比積相等的式子叫做

等積式。比例的基本性質(zhì)及推例式與等積式互化的理論依據(jù)。11、合比性質(zhì):如果HC,那么即弓.等比性質(zhì):如果2=_S=...=m,(b+d+…+m式0),那么bd nac亠-mabd亠亠nb說(shuō)明:應(yīng)用等比性質(zhì)解題時(shí)常采用設(shè)已知條件為 k,這種方法思路單一,方法簡(jiǎn)單不易出錯(cuò)。、黃金分割把一條線段分成兩條線段,使較長(zhǎng)的線段是原線段與較小的線段的比例中項(xiàng),叫做把這條線段黃金分割。說(shuō)明:把一條線段黃金分割的點(diǎn),叫做這條線段的黃金分割點(diǎn),f~在線段AB上截取這條線段的4倍得到點(diǎn)C,則點(diǎn)C就是AB的黃2金分割點(diǎn)。二、平行線分線段成比例1、平行線等分線段定理:如果一組平行線在一條直線上截得的線段相等,那么在其它直線上截得的線段也相等。格式:如果直線L1//L2//La,AB=BC,那么:AB=BC,如圖4—I說(shuō)明:由此定理可知推論1和推論2推論1:經(jīng)過(guò)梯形一腰的中點(diǎn)與底平行的直線必平分另一腰。ABCDAD//BCAE^EB,EF//AD,那么DF=FC格式:如果梯形圖ABCDAD//BCAE^EB,EF//AD,那么DF=FC格式:如果梯形圖4—1圖4-2推論2:經(jīng)過(guò)三角形一邊的中點(diǎn)與另一邊平行的直線必平分第三格式,如果△ABC中,D是AB的中點(diǎn),DE//BC那么AE=EG如圖4—32、平行線分線段成比例定理:三條平行線截兩條直線,所得的對(duì)應(yīng)線段成比例。說(shuō)明:平行線等分線段定理是平行線分線段成比問(wèn)定理的特殊情況。員「料或占’器或七二1K

I!下II員「料或占’器或七二1K

I!下II上戴4I下圖4-4平行線分線段成比例定理的推論:平行于三角形一邊的直線截其它兩邊,所得的對(duì)應(yīng)線段成比例。說(shuō)明1平行線分線段成比例定理可用形象的語(yǔ)言來(lái)表達(dá)。如圖4—4說(shuō)明2:圖4—4的三種圖形中這些成比例線段的位置關(guān)系依然存在。、三角形一邊的平行線的判定定理。如果一條直線截三角形的

兩邊(或兩邊的延長(zhǎng)線)所得的對(duì)應(yīng)線段成比例,那么這條直線平行、三角形一邊的平行線的判定定理:平行于三角形的一邊,并且和其它兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對(duì)應(yīng)成比例。、線段的內(nèi)分點(diǎn):在一條線段上的一個(gè)點(diǎn),將線段分成兩條線段,這個(gè)點(diǎn)叫做這條線段的內(nèi)分點(diǎn)。、線段的外分點(diǎn):在一條線段的延長(zhǎng)線上的點(diǎn),有時(shí)也叫做這條線段的外分點(diǎn)。說(shuō)明:外分點(diǎn)分線段所得的兩條線段,也就是這個(gè)點(diǎn)分別和線段的兩個(gè)端點(diǎn)確定的線段。三、相似三角形1、相似三角形:兩個(gè)對(duì)應(yīng)角相等,對(duì)應(yīng)邊成比例的三角形叫做相似三角形。說(shuō)明:證兩個(gè)三角形相似時(shí)和證兩個(gè)三角形全等一樣,通常把表示對(duì)應(yīng)頂點(diǎn)的字母寫(xiě)在對(duì)應(yīng)的位置上,這樣便于找出相似三角形的對(duì)應(yīng)角和對(duì)應(yīng)邊。2、相似比:相似三角形對(duì)應(yīng)邊的比k,叫做相似比(或叫做相似系數(shù))。、相似三角形的基本定理:平分于三角形一邊的直線和其它兩邊(或兩邊的延長(zhǎng)線)相交,所構(gòu)成的三角形與原三角形相似。說(shuō)明:這個(gè)定理反映了相似三角形的存在性,所以有的書(shū)把它叫做相似三角形的存在定理,它是證明三角形相似的判定定理的理論基礎(chǔ)。、三角形相似的判定定理:(1)判定定理1:如果一個(gè)三角形的兩個(gè)角與另一個(gè)三角形的兩個(gè)角對(duì)應(yīng)相等,那么就兩個(gè)三角形相似??珊?jiǎn)單說(shuō)成:兩角對(duì)應(yīng)相等,兩三角形相似。(2)判定定理2:如果一個(gè)三角形的兩條邊和另一個(gè)三角形的兩條邊對(duì)應(yīng)成比例,并且?jiàn)A角相等,那么這兩個(gè)三角形相似,可簡(jiǎn)單說(shuō)成:兩邊對(duì)應(yīng)成比例且?jiàn)A角相等,兩三角形相似。(3)判定定理3:如果一個(gè)三角形的三條邊與另一個(gè)三角形的三條邊對(duì)應(yīng)成比例,那么這兩個(gè)三角形相似,可簡(jiǎn)單說(shuō)成:三邊對(duì)應(yīng)成比例,兩三角形相似。(4)直角三角形相似的判定定理如果一個(gè)直角三角形的斜邊和一條直角邊與另一個(gè)直角三角形的斜邊和一條直角邊對(duì)應(yīng)成比例,那么這兩個(gè)直角三角形相似。說(shuō)明:以上四個(gè)判定定理不難證明,以下判定三角形相似的命題是正確的,在解題時(shí),也可以用它們來(lái)判定兩個(gè)三角形的相似。第一:頂角(或底角)相等的兩個(gè)等腰三角形相似。第二:腰和底對(duì)應(yīng)成比例的兩個(gè)等腰三角形相似。第三:有一個(gè)銳角相等的兩個(gè)直角三角形相似。第四:直角三角形被斜邊上的高分成的兩個(gè)直角三角形和原三角形相似。第五:如果一個(gè)三角形的兩邊和其中一邊上的中線與另一個(gè)三角

形的兩邊和其中一邊上的中線對(duì)應(yīng)成比例,那么這兩個(gè)三角形.相似。5、相似三角形的性質(zhì):在平面內(nèi)的兩個(gè)相似的圖形,除面積比為平方比外,其余各量之比均等于相似比。6、射影定理:在直角三角形中,斜邊上的咼是兩條直角邊在斜邊射影的比例中項(xiàng),每一條直角邊又是這條直角邊在斜邊上的射影和斜邊的比例中項(xiàng)。如圖:在Rt△ABC中,/ABC=90,BD是斜邊AC上的高,則有射影定理如下BBD2=ADDCAB2=ACAD/\BC2=CDAC幾何部分/\C第五章:解直角三角形A D知識(shí)點(diǎn):一、銳角三角函數(shù):在直角三角形ABC中,/C是直角,如圖5-1、正弦:把銳角asinA=—c、余弦:把銳角.b

cosA=-、正弦:把銳角asinA=—c、余弦:把銳角.b

cosA=-c、正切:把銳角的對(duì)邊與斜邊的比叫做/的鄰邊與斜邊的比叫做/的對(duì)邊與鄰邊的比叫做/的正弦,的余弦,的正切,記作記作記作tanA=ab、銳角三角函數(shù):銳角A的正弦、余弦、正切、余切都叫做/A的銳角三角函數(shù)說(shuō)明:銳角三角函數(shù)都不能取負(fù)值。0vsinAvl;0vcosAv;l、銳角的正弦和余弦之間的關(guān)系任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等于它的余角的正弦值。即sinA=cos(90°—A)=cosB;cosA=sin(90°—A)=sinB說(shuō)明:式中的90°—A=B。、同角三角函數(shù)關(guān)系公式

三角函數(shù)(F30*4S°9(Ftana012獷273"21coscr...巧2五21T0tano07331屈■—COlG-13i0sinAcosA7.—些特殊角的三角函數(shù)值(1)(1)sin2acos2b=1;(2)tanA=由直角三角形中,除直角外的已知元素,求出所有未知元素的過(guò)程,叫做解直角三角形。若直角三角形ABC中,/C=90°,那么A、B、C,a,b,c中除/C=90°外,其余5個(gè)元素之間有關(guān)系:(I)a2b2=c2;(2)ZA十/B=90°;(3)sinA=a;cosA=2;tanA-;⑷面積c c b所以,只要知道其中的2個(gè)元素(至少有一個(gè)是邊),就可以求出其余3個(gè)未知數(shù)。(1)仰角,俯角見(jiàn)圖5-3跨度、中柱:如房屋頂人字架跨度為AB,見(jiàn)圖5圖5-4圖5-3圖5-4深度、燕尾角如燕尾槽的深度,見(jiàn)圖5—5圖5-5 圖5-6也是深度 4D外口寬里口寬 燕尾角(4)坡度、坡角見(jiàn)圖5一6坡度i=7坡度的垂直高度h水平寬度I,i=—=tana(a叫坡角)幾何部分第六章:圓知識(shí)點(diǎn):一、圓1、圓的有關(guān)性質(zhì)在一個(gè)平面內(nèi),線段0A繞它固定的一個(gè)端點(diǎn)0旋轉(zhuǎn)一周,另一個(gè)端點(diǎn)A隨之旋轉(zhuǎn)所形成的圖形叫圓,固定的端點(diǎn)0叫圓心,線段0A叫半徑。由圓的意義可知:圓上各點(diǎn)到定點(diǎn)(圓心0)的距離等于定長(zhǎng)的點(diǎn)都在圓上。就是說(shuō):圓是到定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合,圓的內(nèi)部可以看作是到圓。心的距離小于半徑的點(diǎn)的集合。圓的外部可以看作是到圓心的距離大于半徑的點(diǎn)的集合。連結(jié)圓上任意兩點(diǎn)的線段叫做弦,經(jīng)過(guò)圓心的弦叫直徑。圓上任意兩點(diǎn)間的部分叫圓弧,簡(jiǎn)稱弧。圓的任意一條直徑的兩個(gè)端點(diǎn)分圓成兩條弧,每一條弧都叫半圓,大于半圓的弧叫優(yōu)弧;小于半圓的弧叫劣弧。由弦及其所對(duì)的弧組成的圓形叫弓形。圓心相同,半徑不相等的兩個(gè)圓叫同心圓。能夠重合的兩個(gè)圓叫等圓。同圓或等圓的半徑相等。在同圓或等圓中,能夠互相重合的弧叫等弧。二、過(guò)三點(diǎn)的圓l、過(guò)三點(diǎn)的圓過(guò)三點(diǎn)的圓的作法:利用中垂線找圓心定理不在同一直線上的三個(gè)點(diǎn)確定一個(gè)圓。經(jīng)過(guò)三角形各頂點(diǎn)的圓叫三角形的外接圓,外接圓的圓心叫外心,這個(gè)三角形叫圓的內(nèi)接三角形。2、反證法反證法的三個(gè)步驟:假設(shè)命題的結(jié)論不成立;從這個(gè)假設(shè)出發(fā),經(jīng)過(guò)推理論證,得出矛盾;由矛盾得出假設(shè)不正確,從而肯定命題的結(jié)論正確。三、 垂直于弦的直徑圓是軸對(duì)稱圖形,經(jīng)過(guò)圓心的每一條直線都是它的對(duì)稱軸。垂徑定理(又稱523定理):垂直于弦的直徑平分這條弦,并且平分弦所對(duì)的兩條弧。推理1:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)兩條弧。弦的垂直平分線經(jīng)過(guò)圓心,并且平分弦所對(duì)的兩條弧。平分弦所對(duì)的一條弧的直徑,垂直平分弦,并且平分弦所對(duì)的另一個(gè)條弧。推理2:圓兩條平行弦所夾的弧相等。四、 圓心角、弧、弦、弦心距之間的關(guān)系(413定理)圓是以圓心為對(duì)稱中心的中心對(duì)稱圖形。實(shí)際上,圓繞圓心旋轉(zhuǎn)任意一個(gè)角度,都能夠與原來(lái)的圖形重合。頂點(diǎn)是圓心的角叫圓心角,從圓心到弦的距離叫弦心距。定理:在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦相等,

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論