版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
江蘇省南洋高級中學2023年高三第一次模擬考試(數(shù)學試題理)試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.函數(shù)在上單調(diào)遞減,且是偶函數(shù),若,則的取值范圍是()A.(2,+∞) B.(﹣∞,1)∪(2,+∞)C.(1,2) D.(﹣∞,1)2.已知向量,,則向量在向量上的投影是()A. B. C. D.3.拋物線的焦點為,點是上一點,,則()A. B. C. D.4.已知集合,集合,若,則()A. B. C. D.5.已知實數(shù),滿足,則的最大值等于()A.2 B. C.4 D.86.如圖所示,已知雙曲線的右焦點為,雙曲線的右支上一點,它關(guān)于原點的對稱點為,滿足,且,則雙曲線的離心率是().A. B. C. D.7.已知,是橢圓與雙曲線的公共焦點,是它們的一個公共點,且,橢圓的離心率為,雙曲線的離心率為,若,則的最小值為()A. B. C.8 D.68.函數(shù)的部分圖象如圖所示,則()A.6 B.5 C.4 D.39.不等式組表示的平面區(qū)域為,則()A., B.,C., D.,10.博覽會安排了分別標有序號為“1號”“2號”“3號”的三輛車,等可能隨機順序前往酒店接嘉賓.某嘉賓突發(fā)奇想,設(shè)計兩種乘車方案.方案一:不乘坐第一輛車,若第二輛車的車序號大于第一輛車的車序號,就乘坐此車,否則乘坐第三輛車;方案二:直接乘坐第一輛車.記方案一與方案二坐到“3號”車的概率分別為P1,P2,則()A.P1?P2= B.P1=P2= C.P1+P2= D.P1<P211.設(shè)為虛數(shù)單位,則復數(shù)在復平面內(nèi)對應(yīng)的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限12.已知復數(shù)滿足,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.將底面直徑為4,高為的圓錐形石塊打磨成一個圓柱,則該圓柱的側(cè)面積的最大值為__________.14.設(shè),滿足約束條件,若的最大值是10,則________.15.函數(shù)的值域為_________.16.某校高二(4)班統(tǒng)計全班同學中午在食堂用餐時間,有7人用時為6分鐘,有14人用時7分鐘,有15人用時為8分鐘,還有4人用時為10分鐘,則高二(4)班全體同學用餐平均用時為____分鐘.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在直三棱柱中,,,為的中點,點在線段上,且平面.(1)求證:;(2)求平面與平面所成二面角的正弦值.18.(12分)已知數(shù)列滿足,且.(1)求證:數(shù)列是等差數(shù)列,并求出數(shù)列的通項公式;(2)求數(shù)列的前項和.19.(12分)第7屆世界軍人運動會于2019年10月18日至27日在湖北武漢舉行,賽期10天,共設(shè)置射擊、游泳、田徑、籃球等27個大項,329個小項.共有來自100多個國家的近萬名現(xiàn)役軍人同臺競技.前期為迎接軍運會順利召開,武漢市很多單位和部門都開展了豐富多彩的宣傳和教育活動,努力讓大家更多的了解軍運會的相關(guān)知識,并倡議大家做文明公民.武漢市體育局為了解廣大民眾對軍運會知識的知曉情況,在全市開展了網(wǎng)上問卷調(diào)查,民眾參與度極高,現(xiàn)從大批參與者中隨機抽取200名幸運參與者,他們得分(滿分100分)數(shù)據(jù),統(tǒng)計結(jié)果如下:組別頻數(shù)5304050452010(1)若此次問卷調(diào)查得分整體服從正態(tài)分布,用樣本來估計總體,設(shè),分別為這200人得分的平均值和標準差(同一組數(shù)據(jù)用該區(qū)間中點值作為代表),求,的值(,的值四舍五入取整數(shù)),并計算;(2)在(1)的條件下,為感謝大家參與這次活動,市體育局還對參加問卷調(diào)查的幸運市民制定如下獎勵方案:得分低于的可以獲得1次抽獎機會,得分不低于的可獲得2次抽獎機會,在一次抽獎中,抽中價值為15元的紀念品A的概率為,抽中價值為30元的紀念品B的概率為.現(xiàn)有市民張先生參加了此次問卷調(diào)查并成為幸運參與者,記Y為他參加活動獲得紀念品的總價值,求Y的分布列和數(shù)學期望,并估算此次紀念品所需要的總金額.(參考數(shù)據(jù):;;.)20.(12分)在平面直角坐標系中,已知點,曲線:(為參數(shù))以原點為極點,軸正半軸建立極坐標系,直線的極坐標方程為.(Ⅰ)判斷點與直線的位置關(guān)系并說明理由;(Ⅱ)設(shè)直線與曲線的兩個交點分別為,,求的值.21.(12分)如圖,已知在三棱臺中,,,.(1)求證:;(2)過的平面分別交,于點,,且分割三棱臺所得兩部分幾何體的體積比為,幾何體為棱柱,求的長.提示:臺體的體積公式(,分別為棱臺的上、下底面面積,為棱臺的高).22.(10分)已知函數(shù).(1)求證:當時,;(2)若對任意存在和使成立,求實數(shù)的最小值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
根據(jù)題意分析的圖像關(guān)于直線對稱,即可得到的單調(diào)區(qū)間,利用對稱性以及單調(diào)性即可得到的取值范圍?!驹斀狻扛鶕?jù)題意,函數(shù)滿足是偶函數(shù),則函數(shù)的圖像關(guān)于直線對稱,若函數(shù)在上單調(diào)遞減,則在上遞增,所以要使,則有,變形可得,解可得:或,即的取值范圍為;故選:B.【點睛】本題考查偶函數(shù)的性質(zhì),以及函數(shù)單調(diào)性的應(yīng)用,有一定綜合性,屬于中檔題。2、A【解析】
先利用向量坐標運算求解,再利用向量在向量上的投影公式即得解【詳解】由于向量,故向量在向量上的投影是.故選:A【點睛】本題考查了向量加法、減法的坐標運算和向量投影的概念,考查了學生概念理解,數(shù)學運算的能力,屬于中檔題.3、B【解析】
根據(jù)拋物線定義得,即可解得結(jié)果.【詳解】因為,所以.故選B【點睛】本題考查拋物線定義,考查基本分析求解能力,屬基礎(chǔ)題.4、A【解析】
根據(jù)或,驗證交集后求得的值.【詳解】因為,所以或.當時,,不符合題意,當時,.故選A.【點睛】本小題主要考查集合的交集概念及運算,屬于基礎(chǔ)題.5、D【解析】
畫出可行域,計算出原點到可行域上的點的最大距離,由此求得的最大值.【詳解】畫出可行域如下圖所示,其中,由于,,所以,所以原點到可行域上的點的最大距離為.所以的最大值為.故選:D【點睛】本小題主要考查根據(jù)可行域求非線性目標函數(shù)的最值,考查數(shù)形結(jié)合的數(shù)學思想方法,屬于基礎(chǔ)題.6、C【解析】
易得,,又,平方計算即可得到答案.【詳解】設(shè)雙曲線C的左焦點為E,易得為平行四邊形,所以,又,故,,,所以,即,故離心率為.故選:C.【點睛】本題考查求雙曲線離心率的問題,關(guān)鍵是建立的方程或不等關(guān)系,是一道中檔題.7、C【解析】
由橢圓的定義以及雙曲線的定義、離心率公式化簡,結(jié)合基本不等式即可求解.【詳解】設(shè)橢圓的長半軸長為,雙曲線的半實軸長為,半焦距為,則,,設(shè)由橢圓的定義以及雙曲線的定義可得:,則當且僅當時,取等號.故選:C.【點睛】本題主要考查了橢圓的定義以及雙曲線的定義、離心率公式,屬于中等題.8、A【解析】
根據(jù)正切函數(shù)的圖象求出A、B兩點的坐標,再求出向量的坐標,根據(jù)向量數(shù)量積的坐標運算求出結(jié)果.【詳解】由圖象得,令=0,即=kπ,k=0時解得x=2,令=1,即,解得x=3,∴A(2,0),B(3,1),∴,∴.故選:A.【點睛】本題考查正切函數(shù)的圖象,平面向量數(shù)量積的運算,屬于綜合題,但是難度不大,解題關(guān)鍵是利用圖象與正切函數(shù)圖象求出坐標,再根據(jù)向量數(shù)量積的坐標運算可得結(jié)果,屬于簡單題.9、D【解析】
根據(jù)題意,分析不等式組的幾何意義,可得其表示的平面區(qū)域,設(shè),分析的幾何意義,可得的最小值,據(jù)此分析選項即可得答案.【詳解】解:根據(jù)題意,不等式組其表示的平面區(qū)域如圖所示,其中,,
設(shè),則,的幾何意義為直線在軸上的截距的2倍,
由圖可得:當過點時,直線在軸上的截距最大,即,當過點原點時,直線在軸上的截距最小,即,故AB錯誤;
設(shè),則的幾何意義為點與點連線的斜率,由圖可得最大可到無窮大,最小可到無窮小,故C錯誤,D正確;故選:D.【點睛】本題考查本題考查二元一次不等式的性質(zhì)以及應(yīng)用,關(guān)鍵是對目標函數(shù)幾何意義的認識,屬于基礎(chǔ)題.10、C【解析】
將三輛車的出車可能順序一一列出,找出符合條件的即可.【詳解】三輛車的出車順序可能為:123、132、213、231、312、321方案一坐車可能:132、213、231,所以,P1=;方案二坐車可能:312、321,所以,P1=;所以P1+P2=故選C.【點睛】本題考查了古典概型的概率的求法,常用列舉法得到各種情況下基本事件的個數(shù),屬于基礎(chǔ)題.11、A【解析】
利用復數(shù)的除法運算化簡,求得對應(yīng)的坐標,由此判斷對應(yīng)點所在象限.【詳解】,對應(yīng)的點的坐標為,位于第一象限.故選:A.【點睛】本小題主要考查復數(shù)除法運算,考查復數(shù)對應(yīng)點所在象限,屬于基礎(chǔ)題.12、A【解析】
根據(jù)復數(shù)的運算法則,可得,然后利用復數(shù)模的概念,可得結(jié)果.【詳解】由題可知:由,所以所以故選:A【點睛】本題主要考查復數(shù)的運算,考驗計算,屬基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
由題意欲使圓柱側(cè)面積最大,需使圓柱內(nèi)接于圓錐.設(shè)圓柱的高為h,底面半徑為r,則,將側(cè)面積表示成關(guān)于的函數(shù),再利用一元二次函數(shù)的性質(zhì)求最值.【詳解】欲使圓柱側(cè)面積最大,需使圓柱內(nèi)接于圓錐.設(shè)圓柱的高為h,底面半徑為r,則,所以.∴,當時,的最大值為.故答案為:.【點睛】本題考查圓柱的側(cè)面積的最值,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想、,考查空間想象能力和運算求解能力,求解時注意將問題轉(zhuǎn)化為函數(shù)的最值問題.14、【解析】
畫出不等式組表示的平面區(qū)域,數(shù)形結(jié)合即可容易求得結(jié)果.【詳解】畫出不等式組表示的平面區(qū)域如下所示:目標函數(shù)可轉(zhuǎn)化為與直線平行,數(shù)形結(jié)合可知當且僅當目標函數(shù)過點,取得最大值,故可得,解得.故答案為:.【點睛】本題考查由目標函數(shù)的最值求參數(shù)值,屬基礎(chǔ)題.15、【解析】
利用換元法,得到,利用導數(shù)求得函數(shù)的單調(diào)性和最值,即可得到函數(shù)的值域,得到答案.【詳解】由題意,可得,令,,即,則,當時,,當時,,即在為增函數(shù),在為減函數(shù),又,,,故函數(shù)的值域為:.【點睛】本題主要考查了三角函數(shù)的最值,以及利用導數(shù)研究函數(shù)的單調(diào)性與最值,其中解答中合理利用換元法得到函數(shù),再利用導數(shù)求解函數(shù)的單調(diào)性與最值是解答的關(guān)鍵,著重考查了推理與預算能力,屬于基礎(chǔ)題.16、7.5【解析】
分別求出所有人用時總和再除以總?cè)藬?shù)即可得到平均數(shù).【詳解】故答案為:7.5【點睛】此題考查求平均數(shù),關(guān)鍵在于準確計算出所有數(shù)據(jù)之和,易錯點在于概念辨析不清導致計算出錯.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、見解析【解析】
(1)如圖,連接,交于點,連接,,則為的中點,因為為的中點,所以,又,所以,從而,,,四點共面.因為平面,平面,平面平面,所以.又,所以四邊形為平行四邊形,所以,所以(2)因為,為的中點,所以,又三棱柱是直三棱柱,,所以,,互相垂直,分別以,,的方向為軸、軸、軸的正方向,建立如圖所示的空間直角坐標系,因為,,所以,,,,所以,,.設(shè)平面的法向量為,則,即,令,可得,,所以平面的一個法向量為.設(shè)平面的法向量為,則,即,令,可得,,所以平面的一個法向量為,所以,所以平面與平面所成二面角的正弦值為.18、(1)證明見解析,;(2).【解析】
(1)將等式變形為,進而可證明出是等差數(shù)列,確定數(shù)列的首項和公差,可求得的表達式,進而可得出數(shù)列的通項公式;(2)利用錯位相減法可求得數(shù)列的前項和.【詳解】(1)因為,所以,即,所以數(shù)列是等差數(shù)列,且公差,其首項所以,解得;(2),①,②①②,得,所以.【點睛】本題考查利用遞推公式證明等差數(shù)列,同時也考查了錯位相減法求和,考查推理能力與計算能力,屬于中等題.19、(1),,;(2)詳見解析.【解析】
(1)根據(jù)頻率分布表計算出平均數(shù),進而計算方差,從而X~N(65,142),計算P(51<X<93)即可;(2)列出Y所有可能的取值,分布求出每個取值對應(yīng)的概率,列出分布列,計算期望,進而可得需要的總金額.【詳解】解:(1)由已知頻數(shù)表得:,,由,則,而,所以,則X服從正態(tài)分布,所以;(2)顯然,,所以所有Y的取值為15,30,45,60,,,,,所以Y的分布列為:Y15304560P所以,需要的總金額為:.【點睛】本題考查了利用頻率分布表計算平均數(shù),方差,考查了正態(tài)分布,考查了離散型隨機變量的概率分布列和數(shù)學期望,主要考查數(shù)據(jù)分析能力和計算能力,屬于中檔題.20、(Ⅰ)點在直線上;見解析(Ⅱ)【解析】
(Ⅰ)直線:,即,所以直線的直角坐標方程為,因為,所以點在直線上;(Ⅱ)根據(jù)直線的參數(shù)方程中參數(shù)的幾何意義可得.【詳解】(Ⅰ)直線:,即,所以直線的直角坐標方程為,因為,所以點在直線上;(Ⅱ)直線的參數(shù)方程為(為參數(shù)),曲線的普通方程為,將直線的參數(shù)方程代入曲線的普通方程得,設(shè)兩根為,,所以,,故與異號,所以,,所以.【點睛】本題考查在極坐標參數(shù)方程中方程互化,還考查了直線的參數(shù)方程中參數(shù)的幾何意義,屬于中檔題.21、(1)證明見解析;(2)2【解析】
(1)在中,利用勾股定理,證得,又由題設(shè)條件,得到,利用線面垂直的判定定理,證得平面,進而得到;(2)設(shè)三棱臺和三棱柱的高都為上、下底面之間的距離為,根據(jù)棱臺的體積公式,列出方程求得,得到,即可求
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025版證券行業(yè)勞動合同與證券交易信息保密協(xié)議
- 成都藝術(shù)職業(yè)大學《科技文獻檢索》2023-2024學年第一學期期末試卷
- 2024天然氣工業(yè)用戶接入與供氣保障合同3篇
- 2024年鋼鐵行業(yè)居間服務(wù)買賣合同
- 二零二五年互聯(lián)網(wǎng)企業(yè)員工勞動合同范本(全崗位)2篇
- 2025版快遞派送與快遞網(wǎng)點安全保障合同范本2篇
- 2024清包古建施工合同模板:古建文化傳承與保護工程協(xié)議3篇
- 《赫爾墨斯與雕像者》公開課課件
- 地方性金融服務(wù)體系的差異化發(fā)展
- 二零二五年度XX高速公路路政管理與養(yǎng)護合同3篇
- 譯林新版(2024)七年級英語上冊Unit 5 Reading課件
- 爆破設(shè)計說明書(修改)
- 2025屆天津市南開區(qū)南開中學語文高三上期末達標檢測試題含解析
- 期末試卷(試題)-2024-2025學年四年級上冊數(shù)學滬教版
- 光伏電站運維詳細版手冊
- 藝術(shù)學概論第一章-彭吉象
- 51job在線測評題集
- 2024新教科版一年級科學上冊全冊教案
- 2024兒童身高現(xiàn)狀報告
- 趣味知識問答100道
- 2023年度學校食堂食品從業(yè)人員考核試題(附答案)
評論
0/150
提交評論