![樂都縣第一中學2023屆高三4月調研測試數(shù)學試題試卷_第1頁](http://file4.renrendoc.com/view/109ffcb0ce8cd572d978061bdcbde1b5/109ffcb0ce8cd572d978061bdcbde1b51.gif)
![樂都縣第一中學2023屆高三4月調研測試數(shù)學試題試卷_第2頁](http://file4.renrendoc.com/view/109ffcb0ce8cd572d978061bdcbde1b5/109ffcb0ce8cd572d978061bdcbde1b52.gif)
![樂都縣第一中學2023屆高三4月調研測試數(shù)學試題試卷_第3頁](http://file4.renrendoc.com/view/109ffcb0ce8cd572d978061bdcbde1b5/109ffcb0ce8cd572d978061bdcbde1b53.gif)
![樂都縣第一中學2023屆高三4月調研測試數(shù)學試題試卷_第4頁](http://file4.renrendoc.com/view/109ffcb0ce8cd572d978061bdcbde1b5/109ffcb0ce8cd572d978061bdcbde1b54.gif)
![樂都縣第一中學2023屆高三4月調研測試數(shù)學試題試卷_第5頁](http://file4.renrendoc.com/view/109ffcb0ce8cd572d978061bdcbde1b5/109ffcb0ce8cd572d978061bdcbde1b55.gif)
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
樂都縣第一中學2023屆高三4月調研測試數(shù)學試題試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知平面向量,,滿足:,,則的最小值為()A.5 B.6 C.7 D.82.已知雙曲線的一條漸近線方程為,則雙曲線的離心率為()A. B. C. D.3.已知集合,,若,則()A. B. C. D.4.在中,“”是“”的()A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件5.已知復數(shù)(1+i)(a+i)為純虛數(shù)(i為虛數(shù)單位),則實數(shù)a=()A.-1 B.1 C.0 D.26.一個正方體被一個平面截去一部分后,剩余部分的三視圖如下圖,則截去部分體積與剩余部分體積的比值為()A. B. C. D.7.已知平面平面,且是正方形,在正方形內部有一點,滿足與平面所成的角相等,則點的軌跡長度為()A. B.16 C. D.8.在邊長為1的等邊三角形中,點E是中點,點F是中點,則()A. B. C. D.9.小張家訂了一份報紙,送報人可能在早上之間把報送到小張家,小張離開家去工作的時間在早上之間.用表示事件:“小張在離開家前能得到報紙”,設送報人到達的時間為,小張離開家的時間為,看成平面中的點,則用幾何概型的公式得到事件的概率等于()A. B. C. D.10.函數(shù)的圖象大致為()A. B.C. D.11.某幾何體的三視圖如圖所示,則該幾何體的體積為()A. B. C. D.12.中,點在邊上,平分,若,,,,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若變量,滿足約束條件則的最大值為________.14.執(zhí)行以下語句后,打印紙上打印出的結果應是:_____.15.已知數(shù)列中,為其前項和,,,則_________,_________.16.已知為正實數(shù),且,則的最小值為____________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖1,四邊形是邊長為2的菱形,,為的中點,以為折痕將折起到的位置,使得平面平面,如圖2.(1)證明:平面平面;(2)求點到平面的距離.18.(12分)已知都是各項不為零的數(shù)列,且滿足其中是數(shù)列的前項和,是公差為的等差數(shù)列.(1)若數(shù)列是常數(shù)列,,,求數(shù)列的通項公式;(2)若是不為零的常數(shù)),求證:數(shù)列是等差數(shù)列;(3)若(為常數(shù),),.求證:對任意的恒成立.19.(12分)已知拋物線的焦點為,點,點為拋物線上的動點.(1)若的最小值為,求實數(shù)的值;(2)設線段的中點為,其中為坐標原點,若,求的面積.20.(12分)已知函數(shù)(),是的導數(shù).(1)當時,令,為的導數(shù).證明:在區(qū)間存在唯一的極小值點;(2)已知函數(shù)在上單調遞減,求的取值范圍.21.(12分)在如圖所示的多面體中,四邊形是矩形,梯形為直角梯形,平面平面,且,,.(1)求證:平面.(2)求二面角的大小.22.(10分)如圖,在四棱錐中,底面,底面是直角梯形,為側棱上一點,已知.(Ⅰ)證明:平面平面;(Ⅱ)求二面角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
建立平面直角坐標系,將已知條件轉化為所設未知量的關系式,再將的最小值轉化為用該關系式表達的算式,利用基本不等式求得最小值.【詳解】建立平面直角坐標系如下圖所示,設,,且,由于,所以..所以,即..當且僅當時取得最小值,此時由得,當時,有最小值為,即,,解得.所以當且僅當時有最小值為.故選:B【點睛】本小題主要考查向量的位置關系、向量的模,考查基本不等式的運用,考查數(shù)形結合的數(shù)學思想方法,屬于難題.2、B【解析】
由題意得出的值,進而利用離心率公式可求得該雙曲線的離心率.【詳解】雙曲線的漸近線方程為,由題意可得,因此,該雙曲線的離心率為.故選:B.【點睛】本題考查利用雙曲線的漸近線方程求雙曲線的離心率,利用公式計算較為方便,考查計算能力,屬于基礎題.3、A【解析】
由,得,代入集合B即可得.【詳解】,,,即:,故選:A【點睛】本題考查了集合交集的含義,也考查了元素與集合的關系,屬于基礎題.4、D【解析】
通過列舉法可求解,如兩角分別為時【詳解】當時,,但,故充分條件推不出;當時,,但,故必要條件推不出;所以“”是“”的既不充分也不必要條件.故選:D.【點睛】本題考查命題的充分與必要條件判斷,三角函數(shù)在解三角形中的具體應用,屬于基礎題5、B【解析】
化簡得到z=a-1+a+1【詳解】z=1+ia+i=a-1+a+1i為純虛數(shù),故a-1=0故選:B.【點睛】本題考查了根據(jù)復數(shù)類型求參數(shù),意在考查學生的計算能力.6、D【解析】
試題分析:如圖所示,截去部分是正方體的一個角,其體積是正方體體積的,剩余部分體積是正方體體積的,所以截去部分體積與剩余部分體積的比值為,故選D.考點:本題主要考查三視圖及幾何體體積的計算.7、C【解析】
根據(jù)與平面所成的角相等,判斷出,建立平面直角坐標系,求得點的軌跡方程,由此求得點的軌跡長度.【詳解】由于平面平面,且交線為,,所以平面,平面.所以和分別是直線與平面所成的角,所以,所以,即,所以.以為原點建立平面直角坐標系如下圖所示,則,,設(點在第一象限內),由得,即,化簡得,由于點在第一象限內,所以點的軌跡是以為圓心,半徑為的圓在第一象限的部分.令代入原的方程,解得,故,由于,所以,所以點的軌跡長度為.故選:C【點睛】本小題主要考查線面角的概念和運用,考查動點軌跡方程的求法,考查空間想象能力和邏輯推理能力,考查數(shù)形結合的數(shù)學思想方法,屬于難題.8、C【解析】
根據(jù)平面向量基本定理,用來表示,然后利用數(shù)量積公式,簡單計算,可得結果.【詳解】由題可知:點E是中點,點F是中點,所以又所以則故選:C【點睛】本題考查平面向量基本定理以及數(shù)量積公式,掌握公式,細心觀察,屬基礎題.9、D【解析】
這是幾何概型,畫出圖形,利用面積比即可求解.【詳解】解:事件發(fā)生,需滿足,即事件應位于五邊形內,作圖如下:故選:D【點睛】考查幾何概型,是基礎題.10、A【解析】
確定函數(shù)在定義域內的單調性,計算時的函數(shù)值可排除三個選項.【詳解】時,函數(shù)為減函數(shù),排除B,時,函數(shù)也是減函數(shù),排除D,又時,,排除C,只有A可滿足.故選:A.【點睛】本題考查由函數(shù)解析式選擇函數(shù)圖象,可通過解析式研究函數(shù)的性質,如奇偶性、單調性、對稱性等等排除,可通過特殊的函數(shù)值,函數(shù)值的正負,函數(shù)值的變化趨勢排除,最后剩下的一個即為正確選項.11、D【解析】
結合三視圖可知,該幾何體的上半部分是半個圓錐,下半部分是一個底面邊長為4,高為4的正三棱柱,分別求出體積即可.【詳解】由三視圖可知該幾何體的上半部分是半個圓錐,下半部分是一個底面邊長為4,高為4的正三棱柱,則上半部分的半個圓錐的體積,下半部分的正三棱柱的體積,故該幾何體的體積.故選:D.【點睛】本題考查三視圖,考查空間幾何體的體積,考查空間想象能力與運算求解能力,屬于中檔題.12、B【解析】
由平分,根據(jù)三角形內角平分線定理可得,再根據(jù)平面向量的加減法運算即得答案.【詳解】平分,根據(jù)三角形內角平分線定理可得,又,,,,..故選:.【點睛】本題主要考查平面向量的線性運算,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、7【解析】
畫出不等式組表示的平面區(qū)域,數(shù)形結合,即可容易求得目標函數(shù)的最大值.【詳解】作出不等式組所表示的平面區(qū)域,如下圖陰影部分所示.觀察可知,當直線過點時,有最大值,.故答案為:.【點睛】本題考查二次不等式組與平面區(qū)域、線性規(guī)劃,主要考查推理論證能力以及數(shù)形結合思想,屬基礎題.14、1【解析】
根據(jù)程序框圖直接計算得到答案.【詳解】程序在運行過程中各變量的取值如下所示:是否繼續(xù)循環(huán)ix循環(huán)前14第一圈是44+2第二圈是74+2+8第三圈是104+2+8+14退出循環(huán),所以打印紙上打印出的結果應是:1故答案為:1.【點睛】本題考查了程序框圖,意在考查學生的計算能力和理解能力.15、8(寫為也得分)【解析】
由,得,.當時,,所以,所以的奇數(shù)項是以1為首項,以2為公比的等比數(shù)列;其偶數(shù)項是以2為首項,以2為公比的等比數(shù)列.則,.16、【解析】
,所以有,再利用基本不等式求最值即可.【詳解】由已知,,所以,當且僅當,即時,等號成立.故答案為:【點睛】本題考查利用基本不等式求和的最小值問題,采用的是“1”的替換,也可以消元等,是一道中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】
(1)由題意可證得,,所以平面,則平面平面可證;(2)解法一:利用等體積法由可求出點到平面的距離;解法二:由條件知點到平面的距離等于點到平面的距離,過點作的垂線,垂足,證明平面,計算出即可.【詳解】解法一:(1)依題意知,因為,所以.又平面平面,平面平面,平面,所以平面.又平面,所以.由已知,是等邊三角形,且為的中點,所以.因為,所以.又,所以平面.又平面,所以平面平面.(2)在中,,,所以.由(1)知,平面,且,所以三棱錐的體積.在中,,,得,由(1)知,平面,所以,所以,設點到平面的距離,則三棱錐的體積,得.解法二:(1)同解法一;(2)因為,平面,平面,所以平面.所以點到平面的距離等于點到平面的距離.過點作的垂線,垂足,即.由(1)知,平面平面,平面平面,平面,所以平面,即為點到平面的距離.由(1)知,,在中,,,得.又,所以.所以點到平面的距離為.【點睛】本題主要考查空間面面垂直的的判定及點到面的距離,考查學生的空間想象能力、推理論證能力、運算求解能力.求點到平面的距離一般可采用兩種方法求解:①等體積法;②作(找)出點到平面的垂線段,進行計算即可.18、(1);(2)詳見解析;(3)詳見解析.【解析】
(1)根據(jù),可求得,再根據(jù)是常數(shù)列代入根據(jù)通項與前項和的關系求解即可.(2)取,并結合通項與前項和的關系可求得再根據(jù)化簡可得,代入化簡即可知,再證明也成立即可.(3)由(2)當時,,代入所給的條件化簡可得,進而證明可得,即數(shù)列是等比數(shù)列.繼而求得,再根據(jù)作商法證明即可.【詳解】解:.是各項不為零的常數(shù)列,則,則由,及得,當時,,兩式作差,可得.當時,滿足上式,則;證明:,當時,,兩式相減得:即.即.又,,即.當時,,兩式相減得:.數(shù)列從第二項起是公差為的等差數(shù)列.又當時,由得,當時,由,得.故數(shù)列是公差為的等差數(shù)列;證明:由,當時,,即,,,即,即,當時,即.故從第二項起數(shù)列是等比數(shù)列,當時,..另外,由已知條件可得,又,,因而.令,則.故對任意的恒成立.【點睛】本題主要考查了等差等比數(shù)列的綜合運用,需要熟練運用通項與前項和的關系分析數(shù)列的遞推公式繼而求解通項公式或證明等差數(shù)列等.同時也考查了數(shù)列中的不等式證明等,需要根據(jù)題意分析數(shù)列為等比數(shù)列并求出通項,再利用作商法證明.屬于難題.19、(1)的值為或.(2)【解析】
(1)分類討論,當時,線段與拋物線沒有公共點,設點在拋物線準線上的射影為,當三點共線時,能取得最小值,利用拋物線的焦半徑公式即可求解;當時,線段與拋物線有公共點,利用兩點間的距離公式即可求解.(2)由題意可得軸且設,則,代入拋物線方程求出,再利用三角形的面積公式即可求解.【詳解】由題,,若線段與拋物線沒有公共點,即時,設點在拋物線準線上的射影為,則三點共線時,的最小值為,此時若線段與拋物線有公共點,即時,則三點共線時,的最小值為:,此時綜上,實數(shù)的值為或.因為,所以軸且設,則,代入拋物線的方程解得于是,所以【點睛】本題考查了拋物線的焦半徑公式、直線與拋物線的位置關系中的面積問題,屬于中檔題.20、(1)見解析;(2)【解析】
(1)設,,注意到在上單增,再利用零點存在性定理即可解決;(2)函數(shù)在上單調遞減,則在恒成立,即在上恒成立,構造函數(shù),求導討論的最值即可.【詳解】(1)由已知,,所以,設,,當時,單調遞增,而,,且在上圖象連續(xù)不斷.所以在上有唯一零點,當時,;當時,;∴在單調遞減,在單調遞增,故在區(qū)間上存在唯一的極小值點,即在區(qū)間上存在唯一的極小值點;(2)設,,,∴在單調遞增,,即,從而,因為函數(shù)在上單調遞減,∴在上恒成立,令,∵,∴,在上單調遞減,,當時,,則在上單調遞減,,符合題意.當時,在上單調遞減,所以一定存在,當時,,在上單調遞增,與題意不符,舍去.綜上,的取值范圍是【點睛】本題考查利用導數(shù)研究函數(shù)的極值點、不等式恒成立問題,在處理恒成立問題時,通常是構造函數(shù),轉化成函數(shù)的最值來處理,本題是一道較難的題.21、(1)見解析;(2)【解析】
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 生態(tài)城市中的智能化垃圾分類與處理
- 物流園區(qū)中的多式聯(lián)運組織與管理
- 國慶節(jié)手表銷售活動方案
- 臨時用電專項施工方案編制
- 現(xiàn)代辦公環(huán)境下的溝通技巧與團隊合作
- 生產中的柔性管理策略及實踐應用
- 學生國慶節(jié)游玩活動方案
- Unit 1 Sports and Game Lesson 3(說課稿)-2024-2025學年人教新起點版英語四年級上冊
- 25 王戎不取道旁李(說課稿)-2024-2025學年統(tǒng)編版語文四年級上冊
- 2024年六年級品社下冊《可怕的物種入侵》說課稿2 蘇教版
- 2025年三人合伙投資合作開店合同模板(三篇)
- 2025年合資經營印刷煙包盒行業(yè)深度研究分析報告
- 天津市五區(qū)縣重點校2024-2025學年高一上學期1月期末聯(lián)考試題 化學 含答案
- 吉林省吉林市普通中學2024-2025學年高三上學期二模試題 生物 含答案
- 人教版高一數(shù)學上冊期末考試試卷及答案
- 安全學原理第2版-ppt課件(完整版)
- 機動車登記證書
- 彈性力學第十一章彈性力學的變分原理
- 鉭鈮礦開采項目可行性研究報告寫作范文
- 小升初數(shù)學銜接班優(yōu)秀課件
- 出口食品生產企業(yè)備案自我評估表
評論
0/150
提交評論