2023-2024學(xué)年北京市西城區(qū)市級名校數(shù)學(xué)高二上期末經(jīng)典試題含解析_第1頁
2023-2024學(xué)年北京市西城區(qū)市級名校數(shù)學(xué)高二上期末經(jīng)典試題含解析_第2頁
2023-2024學(xué)年北京市西城區(qū)市級名校數(shù)學(xué)高二上期末經(jīng)典試題含解析_第3頁
2023-2024學(xué)年北京市西城區(qū)市級名校數(shù)學(xué)高二上期末經(jīng)典試題含解析_第4頁
2023-2024學(xué)年北京市西城區(qū)市級名校數(shù)學(xué)高二上期末經(jīng)典試題含解析_第5頁
已閱讀5頁,還剩9頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2023-2024學(xué)年北京市西城區(qū)市級名校數(shù)學(xué)高二上期末經(jīng)典試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若函數(shù)在上有兩個極值點,則下列選項中不正確的為()A. B.C. D.2.已知函數(shù).若數(shù)列的前n項和為,且滿足,,則的最大值為()A.9 B.12C.20 D.3.已知橢圓的左頂點為,上頂點為,右焦點為,若,則橢圓的離心率的取值范圍是()A. B.C. D.4.已知點P在拋物線上,點Q在圓上,則的最小值為()A. B.C. D.5.已知函數(shù)在處取得極值,則()A. B.C. D.6.如圖,過拋物線y2=2px(p>0)的焦點F的直線l交拋物線于點A,B,交其準(zhǔn)線于點C,若|BC|=2|BF|,且|AF|=3,則此拋物線的方程為()A.y2=9x B.y2=6xC.y2=3x D.y2=x7.從集合中任取兩個不同元素,則這兩個元素相差的概率為()A. B.C. D.8.在正方體中,分別是線段的中點,則點到直線的距離是()A. B.C. D.9.給出如下四個命題正確的是()①方程表示的圖形是圓;②橢圓的離心率;③拋物線的準(zhǔn)線方程是;④雙曲線的漸近線方程是A.③ B.①③C.①④ D.②③④10.已知,則下列不等式一定成立的是()A. B.C. D.11.?dāng)?shù)列滿足,,則()A. B.C. D.212.在各項均為正數(shù)等比數(shù)列中,若成等差數(shù)列,則=()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.曲線在x=1處的切線方程為__________.14.已知曲線在點處的切線方程是,則的值為______15.底面半徑為1,母線長為2的圓錐的體積為______16.已知點為雙曲線,右支上一點,,為雙曲線的左、右焦點,點為線段上一點,的角平分線與線段交于點,且滿足,則________;若為線段的中點且,則雙曲線的離心率為________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在△中,角A,B,C的對邊分別為a,b,c,已知,,.(1)求的大小及△的面積;(2)求的值.18.(12分)(1)證明:;(2)已知:,,且,求證:.19.(12分)已知數(shù)列{an}是一個等差數(shù)列,且a2=1,a5=-5.(1)求{an}的通項an;(2)求{an}前n項和Sn的最大值20.(12分)已知函數(shù)(1)若函數(shù)的圖象在點處的切線與平行,求b的值;(2)在(1)的條件下證明:21.(12分)設(shè)集合(1)若,求;(2)設(shè),若是成立的必要不充分條件,求實數(shù)a的取值范圍22.(10分)計算:(1)求函數(shù)(a,b為正常數(shù))的導(dǎo)數(shù)(2)已知點P在曲線上,為曲線在點P處的切線的傾斜角,則的取值范圍

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】求導(dǎo),根據(jù)題意可得,從而可得出答案.【詳解】解:,因為函數(shù)在上有兩個極值點,所以,即.所以ABD正確,C錯誤.故選:C.2、C【解析】先得到及遞推公式,要想最大,則分兩種情況,負數(shù)且最小或為正數(shù)且最大,進而求出最大值.【詳解】①,當(dāng)時,,當(dāng)時,②,所以①-②得:,整理得:,所以,或,當(dāng)是公差為2的等差數(shù)列,且時,最小,最大,此時,所以,此時;當(dāng)且是公差為2的等差數(shù)列時,最大,最大,此時,所以,此時綜上:的最大值為20故選:C【點睛】方法點睛:數(shù)列相關(guān)的最值求解,要結(jié)合題干條件,使用不等式放縮,函數(shù)單調(diào)性或?qū)Ш瘮?shù)等進行求解.3、B【解析】根據(jù)題意得到,根據(jù),化簡得到,進而得到離心率的不等式,即可求解.【詳解】由題意,橢圓的左頂點為,上頂點為,所以,,因為,可得,即,又由,可得,可得,解得,又因為橢圓的離心率,所以,即橢圓的離心率為.故選:B.【點睛】求解橢圓或雙曲線離心率的三種方法:1、定義法:通過已知條件列出方程組,求得得值,根據(jù)離心率的定義求解離心率;2、齊次式法:由已知條件得出關(guān)于的二元齊次方程,然后轉(zhuǎn)化為關(guān)于的一元二次方程求解;3、特殊值法:通過取特殊值或特殊位置,求出離心率.4、C【解析】先計算拋物線上的點P到圓心距離的最小值,再減去半徑即可.【詳解】設(shè),由圓心,得,∴時,,∴故選:C.5、B【解析】根據(jù)極值點處導(dǎo)函數(shù)為零可求解.【詳解】因為,則,由題意可知.經(jīng)檢驗滿足題意故選:B6、C【解析】過點A,B分別作準(zhǔn)線的垂線,交準(zhǔn)線于點E,D,設(shè)|BF|=a,利用拋物線的定義和平行線的性質(zhì)、直角三角形求解【詳解】如圖,過點A,B分別作準(zhǔn)線的垂線,交準(zhǔn)線于點E,D,設(shè)|BF|=a,則由已知得|BC|=2a,由拋物線定義得|BD|=a,故∠BCD=30°,在直角三角形ACE中,因為|AE|=|AF|=3,|AC|=3+3a,2|AE|=|AC|,所以3+3a=6,從而得a=1,|FC|=3a=3,所以p=|FG|=|FC|=,因此拋物線的方程為y2=3x,故選:C.7、B【解析】一一列出所有基本事件,然后數(shù)出基本事件數(shù)和有利事件數(shù),代入古典概型的概率計算公式,即可得解.【詳解】解:從集合中任取兩個不同元素的取法有、、、、、共6種,其中滿足兩個元素相差的取法有、、共3種.故這兩個元素相差的概率為.故選:B.8、A【解析】以為坐標(biāo)原點,分別以的方向為軸的正方向,建立空間直角坐標(biāo)系,然后,列出計算公式進行求解即可【詳解】如圖,以為坐標(biāo)原點,分別以的方向為軸的正方向,建立空間直角坐標(biāo)系.因為,所以,所以,則點到直線的距離故選:A9、A【解析】對選項①,根據(jù)圓一般方程求解即可判斷①錯誤,對選項②,求出橢圓離心率即可判斷②錯誤,對③,求出拋物線漸近線即可判斷③正確,對④,求出雙曲線漸近線方程即可判斷④錯誤?!驹斀狻繉τ冖龠x項,,,故①錯誤;對于②選項,由題知,所以,所以離心率,故②錯誤;對于③選項,拋物線化為標(biāo)準(zhǔn)形式得拋物線,故準(zhǔn)線方程是,故③正確;對于④選項,雙曲線化為標(biāo)準(zhǔn)形式得,所以,焦點在軸上,故漸近線方程是,故④錯誤.故選:A10、B【解析】運用不等式的性質(zhì)及舉反例的方法可求解.詳解】對于A,如,滿足條件,但不成立,故A不正確;對于B,因為,所以,所以,故B正確;對于C,因為,所以,所以不成立,故C不正確;對于D,因為,所以,所以,故D不正確.故選:B11、C【解析】根據(jù)已知分析數(shù)列周期性,可得答案【詳解】解:∵數(shù)列滿足,,∴,,,,故數(shù)列以4為周期呈現(xiàn)周期性變化,由,故,故選C【點睛】本題考查的知識點是數(shù)列的遞推公式,數(shù)列的周期性,難度中檔12、A【解析】利用等差中項的定義以及等比數(shù)列的通項公式即可求解.【詳解】設(shè)等比數(shù)列的公比為,∵成等差數(shù)列,∴,即,解得或(舍去),∴,故選:.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)導(dǎo)數(shù)的幾何意義求切線方程的斜率并求出,再由點斜式寫出切線方程即可.【詳解】由題設(shè),,則,而,所以在x=1處的切線方程為,即.故答案為:.14、11【解析】根據(jù)給定條件結(jié)合導(dǎo)數(shù)的幾何意義直接計算作答.【詳解】因曲線在點處的切線方程是,則,,所以.故答案為:1115、【解析】先由勾股定理求圓錐的高,再結(jié)合圓錐的體積公式運算即可得解.【詳解】解:設(shè)圓錐的高為,由勾股定理可得,由圓錐的體積可得,故答案為.【點睛】本題考查了圓錐的體積公式,重點考查了勾股定理,屬基礎(chǔ)題.16、①.②.【解析】過作,交于點,作,交于點,由向量共線定理可得;再由角平分線性質(zhì)定理和雙曲線的定義、結(jié)合余弦定理和離心率公式,可得所求值【詳解】解:過作交于點,作交于點,由,得,由角平分線定理;因為為的中點,所以,由雙曲線的定義,,所以,,,在中,由余弦定理,所以.故答案為:;.【點睛】本題考查雙曲線的定義、方程和性質(zhì),以及角平分線的性質(zhì)定理和余弦定理的運用,考查方程思想和運算能力,屬于中檔題三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),△的面積為;(2).【解析】(1)應(yīng)用余弦定理求的大小,由三角形面積公式求△的面積;(2)由(1)及正弦定理的邊角關(guān)系可得,即可求目標(biāo)式的值.【小問1詳解】在△中,由余弦定理得:,又,則.所以△的面積為.【小問2詳解】由(1)得:,由正弦定理得:,則,所以.18、(1)證明見解析;(2)證明見解析.【解析】(1)利用分析法證明即可;(2)將與相乘,展開后利用基本不等式可證明所證不等式成立.【詳解】(1)要證成立,即證,即證,即證,而顯然成立,故成立;(2)已知,,且,則,當(dāng)且僅當(dāng)時,等號成立,故.19、(1)an=-2n+5.(2)4【解析】(Ⅰ)設(shè){an}的公差為d,由已知條件,,解出a1=3,d=-2所以an=a1+(n-1)d=-2n+5(Ⅱ)Sn=na1+d=-n2+4n=-(n-2)2+4,所以n=2時,Sn取到最大值420、(1);(2)證明見解析.【解析】(1)由題意可得,從而可求出,(2)先構(gòu)造函數(shù),利用導(dǎo)數(shù)可求得對任意恒成立,對任意恒成立,從而將問題轉(zhuǎn)化為只需證對任意恒成立,再次構(gòu)造函數(shù),利用導(dǎo)數(shù)求出其最大值小于等于即可【詳解】(1)解:∵函數(shù)的圖象在點處的切線與平行,∴,解得;證明:(2)由(1)得即對任意恒成立,令,則,∵當(dāng)時,,∴函數(shù)在上單調(diào)遞增,∵,∴對任意恒成立,即對任意恒成立,∴只需證對任意恒成立即可,即只需證對任意恒成立,令,則,由單調(diào)遞減,且知,函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,∴,∴得證,故不等式對任意恒成立21、(1)(2)【解析】(1)根據(jù)不等式的解答求得,當(dāng)時,求得,結(jié)合集合并集的運算,即可求解;(2)由題意得到是的真子集,根據(jù)集合間的包含關(guān)系,列出不等式組,即可求解.【小問1詳解】解:由,解得,即,當(dāng)時,可得,所以.【小問2詳解】解:由集合,因為,且是成立的必要不充分

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論