版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2023-2024學年吉林省東遼五中高二上數(shù)學期末質(zhì)量跟蹤監(jiān)視試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知數(shù)列的通項公式為,按項的變化趨勢,該數(shù)列是()A.遞增數(shù)列 B.遞減數(shù)列C.擺動數(shù)列 D.常數(shù)列2.胡蘿卜中含有大量的胡蘿卜素,攝入人體消化器官后,可以轉(zhuǎn)化為維生素,現(xiàn)從,兩個品種的胡蘿卜所含的胡蘿卜素(單位:)得到莖葉圖如圖所示,則下列說法不正確的是A. B.的方差大于的方差C.品種的眾數(shù)為 D.品種的中位數(shù)為3.在空間直角坐標系中,點關于原點對稱的點的坐標為()A. B.C. D.4.已知是上的單調(diào)增函數(shù),則的取值范圍是A.﹣1b2 B.﹣1b2C.b﹣2或b2 D.b﹣1或b25.中國古代數(shù)學名著九章算術中有這樣一個問題:今有牛、馬、羊食人苗,苗主責之栗五斗羊主曰:“我羊食半馬”馬主曰:“我馬食半?!苯裼斨瑔柛鞒鰩缀??此問題的譯文是:今有牛、馬、羊吃了別人的禾苗,禾苗的主人要求賠償5斗栗羊主人說:“我羊所吃的禾苗只有馬的一半”馬主人說:“我馬所吃的禾苗只有牛的一半”打算按此比率償還,他們各應償還多少?已知牛、馬、羊的主人各應償還栗a升,b升,c升,1斗為10升,則下列判斷正確的是A.a,b,c依次成公比為2的等比數(shù)列,且B.a,b,c依次成公比為2的等比數(shù)列,且C.a,b,c依次成公比為的等比數(shù)列,且D.a,b,c依次成公比為的等比數(shù)列,且6.已知點,若直線與線段沒有公共點,則的取值范圍是()A. B.C. D.7.雙曲線的焦點到漸近線的距離為()A.1 B.2C. D.8.已知直線與橢圓:()相交于,兩點,且線段的中點在直線:上,則橢圓的離心率為()A. B.C. D.9.等比數(shù)列的各項均為正數(shù),且,則=()A.8 B.16C.32 D.6410.等差數(shù)列的首項為正數(shù),其前n項和為.現(xiàn)有下列命題,其中是假命題的有()A.若有最大值,則數(shù)列的公差小于0B.若,則使的最大的n為18C.若,,則中最大D.若,,則數(shù)列中的最小項是第9項11.已知、分別是雙曲線的左、右焦點,為一條漸近線上的一點,且,則的面積為()A. B.C. D.112.已知不等式的解集為,關于x的不等式的解集為B,且,則實數(shù)a的取值范圍為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設為第二象限角,若,則__________14.復數(shù)(其中i為虛數(shù)單位)的共軛復數(shù)______15.已知點P為橢圓上的任意一點,點,分別為該橢圓的左、右焦點,則的最大值為______________.16.已知函數(shù)是上的奇函數(shù),,對,成立,則的解集為_________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓,直線.(1)若直線與橢圓相切,求實數(shù)的值;(2)若直線與橢圓相交于A、兩點,為線段的中點,為坐標原點,且,求實數(shù)的值.18.(12分)記為等差數(shù)列的前項和,已知,.(1)求的通項公式;(2)求,并求的最小值.19.(12分)已知數(shù)列滿足,,.(1)證明:數(shù)列是等比數(shù)列,并求其通項公式;(2)若,求數(shù)列的前項和.20.(12分)已知數(shù)列通項公式為:,其中.記為數(shù)列的前項和(1)求,;(2)數(shù)列的通項公式為,求的前項和21.(12分)已知數(shù)列的前項和為,且滿足,,成等比數(shù)列,.(1)求數(shù)列的通項公式;(2)令,求數(shù)列的前項和.22.(10分)已知函數(shù)(…是自然對數(shù)的底數(shù)).(1)求的單調(diào)區(qū)間;(2)求函數(shù)的零點的個數(shù).
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】分析的單調(diào)性,即可判斷和選擇.【詳解】因為,顯然隨著的增大,是遞增的,故是遞減的,則數(shù)列是遞減數(shù)列.故選:B.2、C【解析】讀懂莖葉圖,分別計算出眾數(shù)、中位數(shù)、方差,然后對各選項進行判斷【詳解】由莖葉圖知,品種所含胡蘿卜素普遍高于品種,所以,故A正確;品種的數(shù)據(jù)波動比品種的數(shù)據(jù)波動大,所以的方差大于的方差,故B正確;品種的眾數(shù)為與,故C錯誤;品種的數(shù)據(jù)的中位數(shù)為,故D正確.故選.【點睛】本題主要考查了對數(shù)據(jù)的分析,首先要讀懂莖葉圖,然后計算出眾數(shù)、中位數(shù)、方差,即可對各選項進行判斷,較為基礎3、C【解析】根據(jù)點關于原點對稱的性質(zhì)即可知答案.【詳解】由點關于原點對稱,則對稱點坐標為該點對應坐標的相反數(shù),所以.故選:C4、A【解析】利用三次函數(shù)的單調(diào)性,通過其導數(shù)進行研究,求出導數(shù),利用其導數(shù)恒大于0即可解決問題【詳解】∵∴∵函數(shù)是上的單調(diào)增函數(shù)∴在上恒成立∴,即.∴故選A.【點睛】可導函數(shù)在某一區(qū)間上是單調(diào)函數(shù),實際上就是在該區(qū)間上(或)(在該區(qū)間的任意子區(qū)間都不恒等于0)恒成立,然后分離參數(shù),轉(zhuǎn)化為求函數(shù)的最值問題,從而獲得參數(shù)的取值范圍,本題是根據(jù)相應的二次方程的判別式來進行求解.5、D【解析】由條件知,,依次成公比為的等比數(shù)列,三者之和為50升,根據(jù)等比數(shù)列的前n項和,即故答案為D.6、A【解析】分別求出,即可得到答案.【詳解】直線經(jīng)過定點.因為,所以,所以要使直線與線段沒有公共點,只需:,即.所以的取值范圍是.故選:A7、A【解析】分別求出雙曲線的焦點坐標和漸近線方程,利用點到直線的距離公式求出結(jié)果【詳解】雙曲線中,焦點坐標為漸近線方程為:∴雙曲線的焦點到漸近線的距離故選:A8、A【解析】將直線代入橢圓方程整理得關于的方程,運用韋達定理,求出中點坐標,再由條件得到,再由,,的關系和離心率公式,即可求出離心率.【詳解】解:將直線代入橢圓方程得,,即,設,,,,則,即中點的橫坐標是,縱坐標是,由于線段的中點在直線上,則,又,則,,即橢圓的離心率為.故選:A9、B【解析】由等比數(shù)列的下標和性質(zhì)即可求得答案.【詳解】由題意,,所以.故選:B.10、B【解析】由有最大值可判斷A;由,可得,,利用可判斷BC;,得,,可判斷D.【詳解】對于選項A,∵有最大值,∴等差數(shù)列一定有負數(shù)項,∴等差數(shù)列為遞減數(shù)列,故公差小于0,故選項A正確;對于選項B,∵,且,∴,,∴,,則使的最大的n為17,故選項B錯誤;對于選項C,∵,,∴,,故中最大,故選項C正確;對于選項D,∵,,∴,,故數(shù)列中的最小項是第9項,故選項D正確.故選:B.11、A【解析】先表示出漸近線方程,設出點坐標,利用,解出點坐標,再按照面積公式求解即可.【詳解】由題意知,雙曲線漸近線方程為,不妨設在上,設,由得,解得,的面積為.故選:A.12、B【解析】解出不等式可得集合,由可得,然后可得在上恒成立,然后分離參數(shù)求解即可.【詳解】由得,,解得,因為,所以所以可得在上恒成立,即在上恒成立,故只需,,當時,,故故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】先求出,再利用二倍角公式求的值.【詳解】因為為第二象限角,若,所以.所以.故答案為【點睛】本題主要考查同角三角函數(shù)的平方關系,考查二倍角的正弦公式,意在考查學生對這些知識的理解掌握水平,屬于基礎題.14、##【解析】根據(jù)共軛復數(shù)的概念,即可得答案.【詳解】由題意可知:復數(shù)(其中i為虛數(shù)單位)的共軛復數(shù),故答案為:15、【解析】利用正弦定理表示出,再求t,再利用求的最大值即可.【詳解】在中,由正弦定理得,所以,,即求的最大值,也就是求t的最小值,而,即最大時,由橢圓的性質(zhì)知當P為橢圓上頂點時最大,此時,,所以,所以的最大值是1,,所以,故答案為:.【點睛】本題考查橢圓焦點三角形的問題,考查正弦定理的應用.16、【解析】根據(jù)題意可以設,求其導數(shù)可知在上的單調(diào)性,由是上的奇函數(shù),可知的奇偶性,進而可知在上的單調(diào)性,由可知的零點,最后分類討論即可.【詳解】設,則對,,則在上為單調(diào)遞增函數(shù),∵函數(shù)是上的奇函數(shù),∴,∴,∴偶函數(shù),∴在上為單調(diào)遞減函數(shù),又∵,∴,由已知得,所以當時,;當時,;當時,;當時,;若,則;若,則或,解得或或;則的解集為.故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)m值為或.【解析】(1)利用判別式直接求解;(2)用“設而不求法”表示出,即可求出m.【小問1詳解】聯(lián)立,消去y可得.因為直線與橢圓相切,所以,解得:.【小問2詳解】設.聯(lián)立,消去y可得.所以,,所以.又由,可得.所以.因為,所以,解得,所以實數(shù)m的值為或.18、(1)(2),【解析】(1)由,計算出公差,再寫出通項公式即可.(2)直接用公式寫出,配方后求出最小值.【小問1詳解】設公差為,由得,從而,即又,【小問2詳解】由(1)的結(jié)論,,,當時,取得最小值.19、(1)證明見解析,;(2).【解析】(1)由已知條件,可得為常數(shù),從而得證數(shù)列是等比數(shù)列,進而可得數(shù)列的通項公式;(2)由(1)可得,又,所以,所以,利用錯位相減法即可求解數(shù)列的前項和.【小問1詳解】證明:由題意,因為,,,所以,,所以數(shù)列是以2為首項,3為公比的等比數(shù)列,所以;【小問2詳解】解:由(1)可得,又,所以,所以,所以,所以,,所以,所以.20、(1);;(2).【解析】(1)驗證可知數(shù)列是以為周期的周期數(shù)列,則,;(2)由(1)可求得,利用錯位相減法可求得結(jié)果.【小問1詳解】當時,;當時,;當時,;數(shù)列是以為周期的周期數(shù)列;,;【小問2詳解】由(1)得:,,,,兩式作差得:.21、(1);(2).【解析】(1)由可得數(shù)列是公差為2的等差數(shù)列,再由,,成等比數(shù)列,列方程可求出,從而可求得數(shù)列的通項公式;(2)由(1)可得,然后利用裂項相消求和法可求出【詳解】解:(1)由,可得,即數(shù)列是公差為2的等差數(shù)列.所以,,.由題意得,解得,所以.(2)由(1)可得,所以數(shù)列的前項和.22、(1)當時,的單調(diào)遞增區(qū)間為,無單調(diào)遞減區(qū)間;當時,的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為;(2)時函數(shù)沒有零點;或時函數(shù)有且只有一個零點;時,函數(shù)有兩個零點.【解析】(1)先對函數(shù)求導,然后分和兩種情況判斷導函數(shù)正負,求其單調(diào)區(qū)間;(2)由,得,構(gòu)造函數(shù),然后利用導數(shù)求出其單調(diào)區(qū)間和極值,畫出此函數(shù)的圖像,再判斷圖像與直線的交點情況,從而可得答案【詳解】(1)因為,所以,當時,恒成立,所以的單調(diào)遞增區(qū)間為,無單調(diào)遞減區(qū)間;當時,令,得;令,得,所以的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為.(2)顯然0不是
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年度書法藝術培訓課程合作開發(fā)合同3篇
- 2024年度產(chǎn)品代理合同代理區(qū)域及銷售目標3篇
- 2024年能源管理軟件開發(fā)框架采購合同2篇
- 2024年版權授權協(xié)議:圖書出版專用3篇
- 2024版全屋定制衣柜設計與施工合同范本2篇
- 2024年度事業(yè)單位實習生實習協(xié)議示范6篇
- 2024年度事業(yè)單位員工兼職崗位聘用合同實施細則3篇
- 2024年獸藥疫苗研發(fā)、生產(chǎn)、銷售與倉儲一體化采購合同3篇
- 2024年度鋼筋加工行業(yè)金融服務合作協(xié)議3篇
- 鄉(xiāng)村旅游人才培養(yǎng)與隊伍建設策略
- 2024年人教版八年級生物(上冊)期末試卷及答案(各版本)
- 農(nóng)作物病蟲害防治的社會經(jīng)濟效益分析考核試卷
- 2023年全國職業(yè)院校技能大賽-商務數(shù)據(jù)分析賽項規(guī)程
- 第五單元 大單元教學設計-【大單元教學】2024-2025學年七年級語文上冊同步備課系列(統(tǒng)編版2024)
- 《林火生態(tài)與管理》實驗報告
- 2024至2030年中國3C電子產(chǎn)品租賃行業(yè)市場深度研究及投資規(guī)劃建議報告
- 【課件】紀念與象征-空間中的實體藝術+課件-高中美術人美版(2019)美術鑒賞
- JB∕T 11864-2014 長期堵轉(zhuǎn)力矩電動機式電纜卷筒
- SL352水工混凝土試驗規(guī)程
- 2024年云南中考歷史試卷試題答案解析及備考指導課件(深度解讀)
- “十四五”期間推進智慧水利建設實施方案
評論
0/150
提交評論