2023-2024學年大連育明中學高二上數(shù)學期末質量檢測模擬試題含解析_第1頁
2023-2024學年大連育明中學高二上數(shù)學期末質量檢測模擬試題含解析_第2頁
2023-2024學年大連育明中學高二上數(shù)學期末質量檢測模擬試題含解析_第3頁
2023-2024學年大連育明中學高二上數(shù)學期末質量檢測模擬試題含解析_第4頁
2023-2024學年大連育明中學高二上數(shù)學期末質量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023-2024學年大連育明中學高二上數(shù)學期末質量檢測模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知橢圓:的左、右焦點分別為、,為坐標原點,為橢圓上一點.與軸交于一點,,則橢圓C的離心率為()A. B.C. D.2.命題;命題.則A.“或”為假 B.“且”為真C.真假 D.假真3.已知是兩條不同的直線,是兩個不同的平面,且,,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分又不必要條件4.若直線與曲線有公共點,則b的取值范圍是()A. B.C. D.5.若構成空間的一個基底,則下列向量能構成空間的一個基底的是()A.,, B.,,C.,, D.,,6.下列命題中的假命題是()A.若log2x<2,則0<x<4B.若與共線,則與的夾角為0°C.已知各項都不為零的數(shù)列{an}滿足an+1-2an=0,則該數(shù)列為等比數(shù)列D.點(π,0)是函數(shù)y=sinx圖象上一點7.已知函數(shù),則的單調遞增區(qū)間為().A. B.C. D.8.已知是拋物線:的焦點,直線與拋物線相交于,兩點,滿足,記線段的中點到拋物線的準線的距離為,則的最大值為()A. B.C. D.9.圓錐曲線具有豐富的光學性質,從橢圓的一個焦點發(fā)出的光線,經過橢圓反射后,反射光線經過橢圓的另一個焦點.直線l:與橢圓C:相切于點P,橢圓C的焦點為,,由光學性質知直線,與l的夾角相等,則的角平分線所在的直線的方程為()A. B.C. D.10.不等式的解集為()A. B.C. D.11.在等差數(shù)列中,為其前項和,若.則()A. B.C. D.12.已知實數(shù),,則下列不等式恒成立的是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.螺旋線這個名詞來源于希臘文,它的原意是“旋卷”或“纏卷”,平面螺旋便是以一個固定點開始向外逐圈旋繞而形成的曲線,如下圖(1)所示.如圖(2)所示陰影部分也是一個美麗的螺旋線型的圖案,它的畫法是這樣的:正方形ABCD的邊長為4,取正方形ABCD各邊的四等分點E,F(xiàn),G,H,作第2個正方形EFGH,然后再取正方形EFGH各邊的四等分點M,N,P,Q,作第3個正方形MNPQ,依此方法一直繼續(xù)下去,就可以得到陰影部分的圖案.如圖(2)陰影部分,設直角三角形AEH面積為,直角三角形EMQ面積為,后續(xù)各直角三角形面積依次為,…,,若數(shù)列的前n項和恒成立,則實數(shù)的取值范圍為______.14.如圖,在正四棱錐中,為棱PB的中點,為棱PD的中點,則棱錐與棱錐的體積之比為______15.若,,三點共線,則m的值為___________.16.曲線圍成的圖形的面積為___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知:,橢圓,雙曲線.(1)若的離心率為,求的離心率;(2)當時,過點的直線與的另一個交點為,與的另一個交點為,若恰好是的中點,求直線的方程.18.(12分)已知動圓過定點,且與直線相切.(1)求動圓圓心的軌跡的方程;(2)直線過點與曲線相交于兩點,問:在軸上是否存在定點,使?若存在,求點坐標,若不存在,請說明理由.19.(12分)已知斜率為1的直線交拋物線:()于,兩點,且弦中點的縱坐標為2.(1)求拋物線的標準方程;(2)記點,過點作兩條直線,分別交拋物線于,(,不同于點)兩點,且的平分線與軸垂直,求證:直線的斜率為定值.20.(12分)設二次函數(shù).(1)若是函數(shù)的兩個零點,且最小值為.①求證:;②當且僅當a在什么范圍內時,函數(shù)在區(qū)間上存在最小值?(2)若任意實數(shù)t,在閉區(qū)間上總存在兩實數(shù)m,n,使得成立,求實數(shù)a的取值范圍.21.(12分)如圖1,在邊長為2的菱形ABCD中,∠BAD=60°,將△BCD沿對角線BD折起到△BDC′的位置,如圖2所示,并使得平面BDC′⊥平面ABD,E是BD的中點,F(xiàn)A⊥平面ABD,且FA=.圖1圖2(1)求平面FBC′與平面FBA夾角的余弦值;(2)在線段AD上是否存在一點M,使得⊥平面?若存在,求的值;若不存在,說明理由.22.(10分)某企業(yè)2021年年初有資金5千萬元,由于引進了先進生產設備,資金年平均增長率可達到.每年年底扣除下一年的消費基金1.5千萬元后,剩余資金投入再生產.設從2021年的年底起,每年年底企業(yè)扣除消費基金后的剩余資金依次為,,,…(1)寫出,,,并證明數(shù)列是等比數(shù)列;(2)至少到哪一年的年底,企業(yè)的剩余資金會超過21千萬元?(lg

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】由橢圓的性質可先求得,故可得,再由橢圓的定義得a,c的關系,故可得答案【詳解】,,又,,則,,則,,由橢圓的定義得,,,故選:C2、D【解析】命題:可能為0,不為0,假命題,命題:,為真命題,所以“或”為真命題,“且”為假命題.選D.3、B【解析】根據垂直關系的性質可判斷.【詳解】由題,,則或,若,則或或與相交,故充分性不成立;若,則必有,故必要性成立,所以“”是“”的必要不充分條件.故選:B.4、D【解析】將本題轉化為直線與半圓的交點問題,數(shù)形結合,求出的取值范圍【詳解】將曲線的方程化簡為即表示以為圓心,以2為半徑的一個半圓,如圖所示:當直線經過時最大,即,當直線與下半圓相切時最小,由圓心到直線距離等于半徑2,可得:解得(舍去),或結合圖象可得故選:D.5、B【解析】由空間向量內容知,構成基底的三個向量不共面,對選項逐一分析【詳解】對于A:,因此A不滿足題意;對于B:根據題意知道,,不共面,而和顯然位于向量和向量所成平面內,與向量不共面,因此B正確;對于C:,故C不滿足題意;對于D:顯然有,選項D不滿足題意.故選:B6、B【解析】四個選項中需要分別利用對數(shù)函數(shù)的性質,向量共線的定義,等比數(shù)列的定義以及三角函數(shù)圖像判斷,根據題意結合知識點,即可得出結果.【詳解】選項A,由于此對數(shù)函數(shù)單調遞增,并且結合對數(shù)函數(shù)定義域,即可求得結果,所以是真命題;選項B,向量共線,夾角可能是或,所以是假命題;選項C,將式子變形可得,符合等比數(shù)列定義,所以是真命題;選項D,將點代入解析式,等號成立,所以是真命題;故選B.【點睛】本題考查命題真假的判定,根據題意結合各知識點即可判斷真假,需要熟練掌握對數(shù)函數(shù)、等比數(shù)列、向量夾角以及三角函數(shù)的基本性質.7、D【解析】利用導數(shù)分析函數(shù)單調性【詳解】的定義域為,,令,解得故的單調遞增區(qū)間為故選:D8、C【解析】設,過點,分別作拋物線的準線的垂線,垂足分別為,進而得,再結合余弦定理得,進而根據基本不等式求解得.【詳解】解:設,過點,分別作拋物線的準線的垂線,垂足分別為,則,因為點為線段中點,所以根據梯形中位線定理得點到拋物線的準線的距離為,因為,所以在中,由余弦定理得,所以,又因為,所以,當且僅當時等號成立,所以,故.所以的最大值為.故選:C【點睛】本題考查拋物線的定義,直線與拋物線的位置關系,余弦定理,基本不等式,考查運算求解能力,是中檔題.本題解題的關鍵在于根據題意,設,進而結合拋物線的定于與余弦定理得,,再求最值.9、A【解析】先求得點坐標,然后求得的角平分線所在的直線的方程.【詳解】,直線的斜率為,由于直線,與l的夾角相等,則的角平分線所在的直線的斜率為,所以所求直線方程為.故選:A10、A【解析】根據一元二次不等式的解法進行求解即可.【詳解】,故選:A.11、C【解析】利用等差數(shù)列的性質和求和公式可求得的值.【詳解】由等差數(shù)列的性質和求和公式可得.故選:C.12、C【解析】根據不等式性質和作差法判斷大小依次判斷每個選項得到答案.【詳解】當時,不等式不成立,錯誤;,故錯誤正確;當時,不等式不成立,錯誤;故選:.【點睛】本題考查了不等式的性質,作差法判斷大小,意在考查學生對于不等式知識的綜合應用.二、填空題:本題共4小題,每小題5分,共20分。13、或【解析】先求正方形邊長的規(guī)律,再求三角形面積的規(guī)律,從而就可以求和了,再解不等式即可求解.【詳解】由題意,由外到內依次各正方形的邊長分別為,則,,……,,于是數(shù)列是以4為首項,為公比的等比數(shù)列,則.由題意可得:,即……,于是.,故解得或.故答案為:或14、【解析】根據圖形可求出與棱錐的體積之比,即可求出結果【詳解】如圖所示:棱錐可看成正四棱錐減去四個小棱錐的體積得到,設正四棱錐的體積為,為PB的中點,為PD的中點,所以,而,同理,故棱錐的體積的為,即棱錐與棱錐的體積之比為故答案為:.15、【解析】根據三點共線與斜率的關系即可得出【詳解】由,,三點共線,可知所在的直線與所在的直線平行,又,由已知可得,解得故答案為:16、##【解析】曲線圍成圖形關于軸,軸對稱,故只需要求出第一象限的面積即可.【詳解】將或代入方程,方程不發(fā)生改變,故曲線關于軸,軸對稱,因此只需求出第一象限的面積即可.當,時,曲線可化為:,表示的圖形為一個半圓,圍成的面積為,故曲線圍成的圖形的面積為.故答案:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)或【解析】(1)有橢圓的離心率可以得到,的關系,在雙曲線中方程是非標準的方程,注意套公式時容易出錯.(2)聯(lián)立方程分別解得P,Q兩點的橫坐標,利用中點坐標公式即可解得斜率值.【小問1詳解】橢圓的離心率為,,在雙曲線中因為,.【小問2詳解】當時,橢圓,雙曲線.當過點的直線斜率不存在時,點P,Q恰好重合,坐標為,所以不符合條件;當斜率存在時,設直線方程為,,聯(lián)立方程得,利用韋達定理,所以;同理聯(lián)立方程,韋達定理得,所以由于是的中點,所以,所以,即,化簡得,所以直線方程為或.18、(1);(2)存在,.【解析】(1)利用兩點間的距離公式和直線與圓相切的性質即可得出;(2)假設存在點,滿足題設條件,設直線的方程,根據韋達定理即可求出點的坐標【小問1詳解】設動圓的圓心,依題意:化簡得:,即為動圓的圓心的軌跡的方程【小問2詳解】假設存在點,滿足條件,使①,顯然直線斜率不為0,所以由直線過點,可設,由得設,,,,則,由①式得,,即消去,,得,即,,,存在點使得19、(1);(2)見解析.【解析】(1)涉及中點弦,用點差法處理即可求得,進而求得拋物線方程;(2)由的平分線與軸垂直,可知直線,的斜率存在,且斜率互為相反數(shù),且不等于零,設,直線,則直線分別和拋物線方程聯(lián)立,解得利用,結合直線方程,即可證得直線的斜率為定值.【詳解】(1)設,則,兩式相減,得:由弦中點縱坐標為2,得,故.所以拋物線的標準方程.(2)由的平分線與軸垂直,可知直線,的斜率存在,且斜率互為相反數(shù),且不等于零,設直線由得由點在拋物線上,可知上述方程的一個根為.即,同理.直線的斜率為定值.【點睛】本題考查應用點差法處理中點弦問題,直線與拋物線中,斜率為定值問題,考查分析問題的能力,考查學生的計算能力,難度較難.20、(1)①證明見解析;②(2)【解析】(1)①根據二次函數(shù)的性質和一元二次方程的求根公式,求得,即可證得;②由①知,區(qū)間,根據二次函數(shù)的性質,即可求解.(2)存在兩實數(shù),使得成立,轉化為在區(qū)間上,有成立,設﹐結合二次函數(shù)的圖象與性質,分類討論,即可求解.【小問1詳解】解:①由題意,函數(shù)二次函數(shù),因為最小值為,可得,即,因為,所以根據求根公式得,所以.②由①知,區(qū)間因為,對稱軸,且函數(shù)在區(qū)間上存在最小值,所以,因為,所以解得,所以,即a的取值范圍為.【小問2詳解】解:存在兩實數(shù),使得成立,則在區(qū)間上,有成立,設﹐函數(shù)對稱軸為①當即時,在上單調減,,此時;②當即時,,此時③當即時,,此時;④當即時,,此時;綜合①②③④得,且最小值為,因為對任意實數(shù)t,都有,所以只需,即,所以實數(shù)a的取值范圍.21、(1)(2)不存在,理由見解析【解析】(1)利用垂直關系,以點為原點,建立空間直角坐標系,分別求平面和平面的法向量和,利用公式,即可求解;(2)若滿足條件,,利用向量的坐標表示,判斷是否存在點滿足.【小問1詳解】∵,E為BD的中點∴CE⊥BD,又∵平面⊥平面ABD,平面平面,⊥平面,∴⊥平面ABD,如圖以E原點,分別以EB、AE、EC′所在直線為x軸、y軸、z軸建立空間直角坐標系,則B(1,0,0),A(0,-,0),D(-1,0,0),F(xiàn)(0,-,2),(0,0,),∴=(-1,-,2),=(-1,0,),=(1,,0),設平面的法向量為=(x,y,z),則,取z=1,得平面的一個法向量=(,1,1),設平面FBA的法向量為=(a,b,c),則取b=1,得平面FBA的一個法向量為=(-,1,0),∴設平面ABD與平面的夾角為θ,則∴平面ABD與平面夾角的余弦值為.【小問2詳解】假設在線段AD上存在M(x,y,z),使得平面,設(0≤λ≤1),則(x,y+,z)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論