2023-2024學(xué)年甘肅省寧縣高二上數(shù)學(xué)期末調(diào)研模擬試題含解析_第1頁
2023-2024學(xué)年甘肅省寧縣高二上數(shù)學(xué)期末調(diào)研模擬試題含解析_第2頁
2023-2024學(xué)年甘肅省寧縣高二上數(shù)學(xué)期末調(diào)研模擬試題含解析_第3頁
2023-2024學(xué)年甘肅省寧縣高二上數(shù)學(xué)期末調(diào)研模擬試題含解析_第4頁
2023-2024學(xué)年甘肅省寧縣高二上數(shù)學(xué)期末調(diào)研模擬試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2023-2024學(xué)年甘肅省寧縣高二上數(shù)學(xué)期末調(diào)研模擬試題注意事項(xiàng)1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.方程所表示的曲線為()A.射線 B.直線C.射線或直線 D.無法確定2.?dāng)?shù)學(xué)家歐拉在1765年發(fā)現(xiàn),任意三角形的外心、重心、垂心位于同一條直線上,這條直線稱為歐拉線.已知的頂點(diǎn),,若其歐拉線的方程為,則頂點(diǎn)的坐標(biāo)為()A. B.C. D.3.已知空間中四點(diǎn),,,,則點(diǎn)D到平面ABC的距離為()A. B.C. D.04.已知數(shù)列滿足,且,則()A.2 B.3C.5 D.85.如圖是拋物線形拱橋,當(dāng)水面在n時(shí),拱頂離水面2米,水面寬4米.水位下降1米后,水面寬為()A. B.C. D.6.已知點(diǎn)分別為圓與圓的任意一點(diǎn),則的取值范圍是()A. B.C. D.7.直線y=x+1與圓x2+y2=1的位置關(guān)系為A.相切B.相交但直線不過圓心C.直線過圓心D.相離8.設(shè)為可導(dǎo)函數(shù),且滿足,則曲線在點(diǎn)處的切線的斜率是A. B.C. D.9.已知函數(shù),若在處取得極值,且恒成立,則實(shí)數(shù)的最大值為()A. B.C. D.10.等差數(shù)列的前項(xiàng)和為,若,,則()A.12 B.18C.21 D.2711.若變量x,y滿足約束條件,則目標(biāo)函數(shù)最大值為()A.1 B.-5C.-2 D.-712.已知直線l:過橢圓的左焦點(diǎn)F,與橢圓在x軸上方的交點(diǎn)為P,Q為線段PF的中點(diǎn),若,則橢圓的離心率為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.函數(shù)單調(diào)增區(qū)間為______.14.已知圓錐的高為,體積為,則以該圓錐的母線為半徑的球的表面積為______________.15.圓錐的軸截面是邊長為2的等邊三角形,為底面中心,為的中點(diǎn),動(dòng)點(diǎn)在圓錐底面內(nèi)(包括圓周).若,則點(diǎn)形成的軌跡的長度為______16.曲線在點(diǎn)(1,1)處的切線方程為_____三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐中,四邊形ABCD為正方形,PA⊥底面ABCD,,M,N分別為AB和PC的中點(diǎn)(1)求證:MN//平面PAD;(2)求平面MND與平面PAD的夾角的余弦值18.(12分)已知拋物線的焦點(diǎn)到準(zhǔn)線的距離為,過點(diǎn)的直線與拋物線只有一個(gè)公共點(diǎn).(1)求拋物線的方程;(2)求直線的方程.19.(12分)在平面直角坐標(biāo)系中,圓外的點(diǎn)在軸的右側(cè)運(yùn)動(dòng),且到圓上的點(diǎn)的最小距離等于它到軸的距離,記的軌跡為(1)求的方程;(2)過點(diǎn)的直線交于,兩點(diǎn),以為直徑的圓與平行于軸的直線相切于點(diǎn),線段交于點(diǎn),證明:是的中點(diǎn)20.(12分)如圖,中,且,將沿中位線EF折起,使得,連結(jié)AB,AC,M為AC的中點(diǎn).(1)證明:平面ABC;(2)求二面角的余弦值.21.(12分)已知橢圓的左、右焦點(diǎn)分別為,,且橢圓過點(diǎn),離心率,為坐標(biāo)原點(diǎn),過且不平行于坐標(biāo)軸的動(dòng)直線與有兩個(gè)交點(diǎn),,線段的中點(diǎn)為.(1)求的標(biāo)準(zhǔn)方程;(2)記直線斜率為,直線的斜率為,證明:為定值;(3)軸上是否存在點(diǎn),使得為等邊三角形?若存在,求出點(diǎn)的坐標(biāo);若不存在,請說明理由.22.(10分)在等差數(shù)列中,已知公差,且成等比數(shù)列(1)求數(shù)列的通項(xiàng)公式;(2)記,求數(shù)列的前項(xiàng)和

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】將方程化為或,由此可得所求曲線.【詳解】由得:或,即或,方程所表示的曲線為射線或直線.故選:C.2、A【解析】設(shè),計(jì)算出重心坐標(biāo)后代入歐拉方程,再求出外心坐標(biāo),根據(jù)外心的性質(zhì)列出關(guān)于的方程,最后聯(lián)立解方程即可.【詳解】設(shè),由重心坐標(biāo)公式得,三角形的重心為,,代入歐拉線方程得:,整理得:①的中點(diǎn)為,,的中垂線方程為,即聯(lián)立,解得的外心為則,整理得:②聯(lián)立①②得:,或,當(dāng),時(shí),重合,舍去頂點(diǎn)的坐標(biāo)是故選:A【點(diǎn)睛】關(guān)鍵點(diǎn)睛:解決本題的關(guān)鍵一是求出外心,二是根據(jù)外心的性質(zhì)列方程.3、C【解析】根據(jù)題意,求得平面的一個(gè)法向量,結(jié)合距離公式,即可求解.【詳解】由題意,空間中四點(diǎn),,,,可得,設(shè)平面的法向量為,則,令,可得,所以,所以點(diǎn)D到平面ABC的距離為.故選:C.4、D【解析】使用遞推公式逐個(gè)求解,直到求出即可.【詳解】因?yàn)樗?,,?故選:D5、D【解析】由題建立平面直角坐標(biāo)系,設(shè)拋物線方程為,結(jié)合條件即求.【詳解】建立如圖所示的直角坐標(biāo)系:設(shè)拋物線方程為,由題意知:在拋物線上,即,解得:,,當(dāng)水位下降1米后,即將代入,即,解得:,∴水面寬為米.故選:D.6、B【解析】先判定兩圓的位置關(guān)系為相離的關(guān)系,然后利用幾何方法得到的取值范圍.【詳解】的圓心為,半徑,的圓心為,半徑,圓心距,∴兩圓相離,∴,故選:B.7、B【解析】求出圓心到直線的距離d,與圓的半徑r比較大小即可判斷出直線與圓的位置關(guān)系,同時(shí)判斷圓心是否在直線上,即可得到正確答案解:由圓的方程得到圓心坐標(biāo)(0,0),半徑r=1則圓心(0,0)到直線y=x+1的距離d==<r=1,把(0,0)代入直線方程左右兩邊不相等,得到直線不過圓心所以直線與圓的位置關(guān)系是相交但直線不過圓心故選B考點(diǎn):直線與圓的位置關(guān)系8、D【解析】由題,為可導(dǎo)函數(shù),,即曲線在點(diǎn)處的切線的斜率是,選D【點(diǎn)睛】本題考查導(dǎo)數(shù)的定義,切線的斜率,以及極限的運(yùn)算,本題解題的關(guān)鍵是對所給的極限式進(jìn)行整理,得到符合導(dǎo)數(shù)定義的形式9、D【解析】根據(jù)已知在處取得極值,可得,將在恒成立,轉(zhuǎn)化為,只需求,求出最小值即可得答案【詳解】解:,,由在處取得極值,得,解得,所以,,其中,.當(dāng)時(shí),,此時(shí)函數(shù)單調(diào)遞減,當(dāng)時(shí),,此時(shí)函數(shù)單調(diào)遞增,故函數(shù)在處取得極小值,,恒成立,轉(zhuǎn)化為,令,,則,,令得,當(dāng)時(shí),,此時(shí)函數(shù)單調(diào)遞減,當(dāng)時(shí),,此時(shí)函數(shù)單調(diào)遞增,所以,即得,故選:D10、B【解析】根據(jù)等差數(shù)列的前項(xiàng)和為具有的性質(zhì),即成等差數(shù)列,由此列出等式,求得答案.【詳解】因?yàn)闉榈炔顢?shù)列的前n項(xiàng)和,且,,所以成等差數(shù)列,所以,即,解得=18,故選:B.11、A【解析】作出不等式組對應(yīng)的平面區(qū)域,利用目標(biāo)函數(shù)的幾何意義,進(jìn)行求最值即可【詳解】解:由得作出不等式組對應(yīng)的平面區(qū)域如圖(陰影部分平移直線,由圖象可知當(dāng)直線,過點(diǎn)時(shí)取得最大值,由,解得,所以代入目標(biāo)函數(shù),得,故選:A12、D【解析】由直線的傾斜角為,可得,結(jié)合,可推得是等邊三角形,可得,計(jì)算可得離心率【詳解】直線:過橢圓的左焦點(diǎn),設(shè)橢圓的右焦點(diǎn)為,所以,又是的中點(diǎn),是的中點(diǎn),所以,又,所以,又,所以是等邊三角形,所以,又在橢圓上,所以,所以,所以離心率為,故選:二、填空題:本題共4小題,每小題5分,共20分。13、【解析】利用導(dǎo)數(shù)法求解.【詳解】因?yàn)楹瘮?shù),所以,當(dāng)時(shí),,所以的單調(diào)增區(qū)間是,故答案為:14、【解析】利用圓錐體積公式可求得圓錐底面半徑,利用勾股定理可得母線長;根據(jù)球的表面積公式可求得結(jié)果.【詳解】設(shè)圓錐的底面半徑為,母線長為,圓錐體積,,,以為半徑的球的表面積.故答案為:.15、【解析】建立空間直角坐標(biāo)系設(shè),,,,于是,,因?yàn)椋?,從而,,此為點(diǎn)形成的軌跡方程,其在底面圓盤內(nèi)的長度為16、【解析】根據(jù)導(dǎo)數(shù)的幾何意義求出切線的斜率,再根據(jù)點(diǎn)斜式可求出結(jié)果.【詳解】因?yàn)椋郧€在點(diǎn)(1,1)處的切線的斜率為,所以所求切線方程為:,即.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2).【解析】(1)在平面中構(gòu)造與平行的直線,利用線線平行推證線面平行即可;(2)以為坐標(biāo)原點(diǎn)建立空間直角坐標(biāo)系,分別求得兩個(gè)平面的法向量,利用向量法即可求得兩個(gè)平面夾角的余弦值.【小問1詳解】取中點(diǎn)為,連接,如下所示:因?yàn)闉檎叫?,為中點(diǎn),故可得//;在△中,因?yàn)榉謩e為的中點(diǎn),故可得//;故可得//,則四邊形為平行四邊形,即//,又面面,故//面.【小問2詳解】因?yàn)槊婷妫士傻茫值酌鏋檎叫?,故可得,則兩兩垂直;故以為坐標(biāo)原點(diǎn),以分別為軸建立空間直角坐標(biāo)系如下所示:故可得,設(shè)平面的法向量為,又則,即,不妨取,則,則,取面的法向量為,故.設(shè)平面的夾角為,故可得,即平面MND與平面PAD的夾角的余弦值為.18、(1);(2)或或.【解析】(1)根據(jù)給定條件結(jié)合p的幾何意義,直接求出p寫出方程作答.(2)直線l的斜率存在設(shè)出其方程,再與拋物線C的方程聯(lián)立,再討論計(jì)算,l斜率不存在時(shí)驗(yàn)證作答.【小問1詳解】因拋物線的焦點(diǎn)到準(zhǔn)線的距離為,于是得,所以拋物線的方程為.【小問2詳解】當(dāng)直線的斜率存在時(shí),設(shè)直線為,由消去y并整理得:,當(dāng)時(shí),,點(diǎn)是直線與拋物線唯一公共點(diǎn),因此,,直線方程為,當(dāng)時(shí),,此時(shí)直線與拋物線相切,直線方程為,當(dāng)直線的斜率不存在時(shí),y軸與拋物線有唯一公共點(diǎn),直線方程為,所以直線方程為為或或.19、(1)(2)證明見解析【解析】(1)設(shè)點(diǎn),求得到圓上的最小距離為,根據(jù)題意得到,整理即可求得曲線的方程;(2)當(dāng)直線的斜率不存在時(shí),顯然成立;當(dāng)直線的斜率存在時(shí),設(shè)直線的方程,聯(lián)立方程組求得和,得到,結(jié)合拋物線的定義和方程求得,,結(jié)合,即可求解.【小問1詳解】解:設(shè)點(diǎn),(其中),由圓,可得圓心坐標(biāo)為,因?yàn)樵趫A外,所以到圓上的點(diǎn)的最小距離為,又由到圓上的點(diǎn)的最小距離等于它到軸的距離,可得,即,整理得,即曲線的方程為【小問2詳解】解:當(dāng)直線的斜率不存在時(shí),可得點(diǎn)為拋物線的交點(diǎn),點(diǎn)為坐標(biāo)原點(diǎn),點(diǎn)為拋物線的準(zhǔn)線與軸的交點(diǎn),顯然滿足是的中點(diǎn);當(dāng)直線的斜率存在時(shí),設(shè)直線的方程,設(shè),,,則,聯(lián)立方程組,整理得,因?yàn)椋?,則,故,由拋物線的定義知,設(shè),可得,所以,又因?yàn)?,所以,解得,所以,因?yàn)樵诘匚锞€上,所以,即,所以,即是的中點(diǎn)20、(1)證明見解析(2)【解析】(1)由勾股定理以及等腰三角形的性質(zhì)得出,,再由線面垂直的判定證明即可;(2)以點(diǎn)為坐標(biāo)原點(diǎn),建立空間直角坐標(biāo)系,由向量法得出面面角.【小問1詳解】設(shè),則,,平面平面,連接,,,,,即又,平面ABC【小問2詳解】,以點(diǎn)為坐標(biāo)原點(diǎn),建立如下圖所示的空間直角坐標(biāo)系設(shè)平面的法向量為,平面的法向量為,令,則同理可得,又二面角為鈍角,故二面角的余弦值為.21、(1);(2)證明見解析;(3)不存在,理由見解析.【解析】(1)由橢圓所過點(diǎn)及離心率,列方程組,再求解即得;(2)設(shè)出點(diǎn)A,B坐標(biāo)并列出它們滿足的關(guān)系,利用點(diǎn)差法即可作答;(3)設(shè)直線的方程,聯(lián)立直線與橢圓的方程,借助韋達(dá)定理求得,,再結(jié)合為等邊三角形的條件即可作答.【詳解】(1)顯然,半焦距c有,即,則,所以橢圓的標(biāo)準(zhǔn)方程為;(2)設(shè),,,,由(1)知,,兩式相減得,即,而弦的中點(diǎn),則有,所以;(3)假定存在符合要求的點(diǎn)P

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論