2023-2024學年甘肅省天水市五中數(shù)學高二上期末聯(lián)考模擬試題含解析_第1頁
2023-2024學年甘肅省天水市五中數(shù)學高二上期末聯(lián)考模擬試題含解析_第2頁
2023-2024學年甘肅省天水市五中數(shù)學高二上期末聯(lián)考模擬試題含解析_第3頁
2023-2024學年甘肅省天水市五中數(shù)學高二上期末聯(lián)考模擬試題含解析_第4頁
2023-2024學年甘肅省天水市五中數(shù)學高二上期末聯(lián)考模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2023-2024學年甘肅省天水市五中數(shù)學高二上期末聯(lián)考模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在單調(diào)遞減的等比數(shù)列中,若,,則()A.9 B.3C. D.2.圍棋起源于中國,據(jù)先秦典籍世本記載:“堯造圍棋,丹朱善之”,至今已有四千多年歷史.圍棋不僅能抒發(fā)意境、陶冶情操、修身養(yǎng)性、生慧增智,而且還與天象易理、兵法策略、治國安邦等相關聯(lián),蘊含著中華文化的豐富內(nèi)涵.在某次國際圍棋比賽中,規(guī)定甲與乙對陣,丙與丁對陣,兩場比賽的勝者爭奪冠軍,根據(jù)以往戰(zhàn)績,他們之間相互獲勝的概率如下:甲乙丙丁甲獲勝概率乙獲勝概率丙獲勝概率丁獲勝概率則甲最終獲得冠軍的概率是()A.0.165 B.0.24C.0.275 D.0.363.在四棱錐中,分別為的中點,則()A. B.C. D.4.某幾何體的三視圖如圖所示,則該幾何體的體積為A.54 B.45C.27 D.815.已知數(shù)列為等比數(shù)列,若,則的值為()A.-4 B.4C.-2 D.26.數(shù)列,,,,…,的通項公式可能是()A. B.C. D.7.已知命題:,,命題:,,則()A.是假命題 B.是真命題C.是真命題 D.是假命題8.已知A為拋物線C:y2=2px(p>0)上一點,點A到C的焦點的距離為12,到y(tǒng)軸的距離為9,則p=()A.2 B.3C.6 D.99.若圓與直線相切,則實數(shù)的值為()A. B.或3C. D.或10.圓心在x軸負半軸上,半徑為4,且與直線相切的圓的方程為()A. B.C. D.11.已知,,則在上的投影向量為()A.1 B.C. D.12.若復數(shù),則()A B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.圓和圓的公切線的條數(shù)為______14.已知函數(shù),有且只有一個零點,則實數(shù)的取值范圍是_______.15.若關于的不等式的解集為R,則的取值范圍是______.16.設為等差數(shù)列的前n項和,若,,則______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知的內(nèi)角的對邊分別為a,,若向量,且(1)求角的值;(2)已知的外接圓半徑為,求周長的最大值.18.(12分)已知動圓過點且動圓內(nèi)切于定圓:記動圓圓心的軌跡為曲線.(1)求曲線方程;(2)若、是曲線上兩點,點滿足求直線的方程.19.(12分)已知圓:,過圓外一點作圓的兩條切線,,,為切點,設為圓上的一個動點.(1)求的取值范圍;(2)求直線的方程.20.(12分)已知函數(shù),,其中為自然對數(shù)的底數(shù).(1)若為的極值點,求的單調(diào)區(qū)間和最大值;(2)是否存在實數(shù),使得的最大值是?若存在,求出的值;若不存在,說明理由.21.(12分)已知橢圓的左、右焦點分別為,,離心率為,過左焦點的直線l與橢圓C交于A,B兩點,的周長為8(1)求橢圓C的標準方程;(2)如圖,,是橢圓C的短軸端點,P是橢圓C上異于點,的動點,點Q滿足,,求證與的面積之比為定值22.(10分)已知函數(shù).(1)若在上單調(diào)遞增,求的取值范圍;(2)若在上存在極值點,證明:.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】利用等比數(shù)列的通項公式可得,結合條件即求.【詳解】設等比數(shù)列的公比為,則由,,得,解得或,又單調(diào)遞減,故,.故選:A.2、B【解析】先求出甲第一輪勝出的概率,再求出甲第二輪勝出的概率,即可得出結果.【詳解】甲最終獲得冠軍的概率,故選:B.3、A【解析】結合空間幾何體以及空間向量的線性運算即可求出結果.【詳解】因為分別為的中點,則,,,故選:A.4、B【解析】由三視圖可得該幾何體是由平行六面體切割掉一個三棱錐而成,直觀圖如圖所示,所以該幾何體的體積為故選B點睛:本題考查了組合體的體積,由三視圖還原出幾何體,由四棱柱的體積減去三棱錐的體積.5、B【解析】根據(jù),利用等比數(shù)列的通項公式求解.【詳解】因為,所以,則,解得,所以.故選:B6、D【解析】利用數(shù)列前幾項排除A、B、C,即可得解;【詳解】解:由,排除A,C,由,排除B,分母為奇數(shù)列,分子為,故數(shù)列的通項公式可以為,故選:D7、C【解析】先分別判斷命題、的真假,再利用邏輯聯(lián)結詞“或”與“且”判斷命題的真假.【詳解】由題意,,所以,成立,即命題為真命題,,所以不存在,使得,即命題為假命題,所以是假命題,為真命題,所以是真命題,是假命題,是假命題,是真命題.故選:C8、C【解析】利用拋物線的定義建立方程即可得到答案.【詳解】設拋物線的焦點為F,由拋物線的定義知,即,解得.故選:C.【點晴】本題主要考查利用拋物線的定義計算焦半徑,考查學生轉化與化歸思想,是一道容易題.9、D【解析】利用圓心到直線的距離等于半徑可得答案.【詳解】若圓與直線相切,則到直線的距離為,所以,解得,或.故選:D.10、A【解析】根據(jù)題意,設圓心為坐標為,,由直線與圓相切的判斷方法可得圓心到直線的距離,解得的值,即可得答案【詳解】根據(jù)題意,設圓心為坐標為,,圓的半徑為4,且與直線相切,則圓心到直線的距離,解得:或13(舍,則圓的坐標為,故所求圓的方程為,故選:A11、C【解析】根據(jù)題意得,進而根據(jù)投影向量的概念求解即可.【詳解】解:因為,,所以,所以,所以在上的投影向量為故選:C12、A【解析】根據(jù)復數(shù)的乘法運算即可求解.【詳解】由,故選:A二、填空題:本題共4小題,每小題5分,共20分。13、3【解析】判斷出兩個圓的位置關系,由此確定公切線的條數(shù).內(nèi)含關系0條公切線,內(nèi)切關系1條公切線,相交關系2條公切線,外切關系3條公切線,外離關系4條公切線?!驹斀狻坑深}知圓:的圓心,半徑,圓:的圓心,半徑,所以,,所以兩圓外切,所以兩圓共有3條公切線.故答案為:314、【解析】由題知方程,,有且只有一個零點,進而構造函數(shù),利用導數(shù)研究函數(shù)單調(diào)性與函數(shù)值得變化情況,作出函數(shù)的大致圖像,數(shù)形結合求解即可.【詳解】解:因為函數(shù),,有且只有一個零點,所以方程,,有且只有一個零點,令,則,,令,則所以為上的單調(diào)遞減函數(shù),因為,所以當時,;當時,;所以當時,;當時,,所以在上單調(diào)遞增,在上單調(diào)遞減,因為當趨近于時,趨近于,當趨近于時,趨近于,且,時,,故的圖像大致如圖所示,所以方程,,有且只有一個零點等價于或.所以實數(shù)的取值范圍是故答案為:15、【解析】分為和考慮,當時,根據(jù)題意列出不等式組,求出的取值范圍.【詳解】當?shù)茫?,滿足題意;當時,要想保證關于的不等式的解集為R,則要滿足:,解得:,綜上:的取值范圍為故答案為:16、36【解析】利用等差數(shù)列前n項和的性質(zhì)進行求解即可.【詳解】因為為等差數(shù)列的前n項和,所以也成等差數(shù)列,即成等差數(shù)列,所以,故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)6【解析】(1)由可得,再利用正弦定理和三角函數(shù)恒等變換公可得,從而可求出角的值,(2)利用正弦定理求出,再利用余弦定理結合基本不等式可得的最大值為4,從而可求出三角形周長的最大值【小問1詳解】由,得

,由正弦定理,得,即.在中,由,得.又,所以.【小問2詳解】根據(jù)題意,得,由余弦定理,得,即,整理得,當且僅當時,取等號,所以的最大值為所以.所以的周長的最大值為

.18、(1);(2).【解析】(1)根據(jù)兩圓內(nèi)切,以及圓過定點列式求軌跡方程;(2)利用重心坐標公式可知,,再設直線的方程為與橢圓方程聯(lián)立,利用根與系數(shù)的關系求解直線方程.【詳解】(1)由已知可得,兩式相加可得則點的軌跡是以、為焦點,長軸長為的橢圓,則因此曲線的方程是(2)因為,則點是的重心,易得直線的斜率存在,設直線的方程為,聯(lián)立消得:且①②由①②解得則直線的方程為即【點睛】本題考查直線與橢圓的問題關系,本題的關鍵是根據(jù)求得,.19、(1)(2)【解析】(1)求出PM,就可以求PQ的范圍;(2)使用待定系數(shù)法求出切線的方程,再求求切點的坐標,從而可以求切點的連線的方程.【小問1詳解】如下圖所示,因為圓的方程可化為,所以圓心,半徑,且,所以,故取值范圍為.【小問2詳解】可知切線,中至少一條的斜率存在,設為,則此切線為即,由圓心到此切線的距離等于半徑,即,得所以兩條切線的方程為和,于是由聯(lián)立方程組得兩切點的坐標為和所以故直線的方程為即20、(1)單調(diào)增區(qū)間是,單調(diào)減區(qū)間是;最大值為;(2)存在,.【解析】(1)利用為的極值點求得,進而可得函數(shù)的單調(diào)區(qū)間和最大值;(2)對導函數(shù),分與進行討論,得函數(shù)的單調(diào)性進而求得最值,再由最大值是求出的值.【詳解】解:.(1)∵,,∴,由,得.∴,∴,,,,∴的單調(diào)增區(qū)間是,單調(diào)減區(qū)間是;的極大值為;也即的最大值為.(2)解:∵,∴,①當時,單調(diào)遞增,得的最大值是,解得,舍去;②時,由,即,當,即時,∴時,;時,;∴的單調(diào)增區(qū)間是,單調(diào)減區(qū)間是,又在上的最大值為,∴,∴;當,即時,在單調(diào)遞增,∴的最大值是,解得,舍去;綜上:存在符合題意,此時.【點睛】本題主要考查了函數(shù)的導數(shù)在求解函數(shù)的單調(diào)性及求解函數(shù)的最值中的應用,還考查了函數(shù)的最值求解與分類討論的應用,解題時要認真審題,注意挖掘題設中的條件.21、(1)(2)證明見解析【解析】(1)根據(jù)周長為8,求得a,再根據(jù)離心率求解;(2)方法一:設,,得到直線和直線的方程,聯(lián)立求得Q的橫坐標,根據(jù)在橢圓上,得到,然后代入Q的橫坐標求解;方法二:設直線,的斜率分別為k,,點,,直線的方程為,與橢圓方程聯(lián)立,求得點P橫坐標,再由的直線方程聯(lián)立,得到P,Q的橫坐標的關系求解.【小問1詳解】解:∵的周長為8,∴,即,∵離心率,∴,,∴橢圓C的標準方程為【小問2詳解】方法一:設,則直線斜率,∵,∴直線斜率,∴直線的方程為:,同理直線的方程為:,聯(lián)立上面兩直線方程,消去y,得,∵在橢圓上,∴,即,∴,∴所以與的面積之比為定值4方法二:設直線,的斜率分別為k,,點,,則直線的方程為,∵,∴直線的方程為,將代入,得,∵P是橢圓上異于點,的點,∴,又∵,即,∴,即,由,得直線的方程為,聯(lián)立得,∴所以與的面積之比為定值422、(1)(2)證明見解析【解析】(1)由題得,在,上為單調(diào)遞增的函數(shù),在,上恒成立,分類討論,再次利用

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論