2023-2024學年西藏自治區(qū)日喀則市南木林高級中學數(shù)學高二上期末經(jīng)典模擬試題含解析_第1頁
2023-2024學年西藏自治區(qū)日喀則市南木林高級中學數(shù)學高二上期末經(jīng)典模擬試題含解析_第2頁
2023-2024學年西藏自治區(qū)日喀則市南木林高級中學數(shù)學高二上期末經(jīng)典模擬試題含解析_第3頁
2023-2024學年西藏自治區(qū)日喀則市南木林高級中學數(shù)學高二上期末經(jīng)典模擬試題含解析_第4頁
2023-2024學年西藏自治區(qū)日喀則市南木林高級中學數(shù)學高二上期末經(jīng)典模擬試題含解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2023-2024學年西藏自治區(qū)日喀則市南木林高級中學數(shù)學高二上期末經(jīng)典模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.函數(shù)的圖象大致為()A. B.C. D.2.雙曲線的漸近線方程為()A. B.C. D.3.若橢圓對稱軸是坐標軸,長軸長為,焦距為,則橢圓的方程()A. B.C.或 D.以上都不對4.空間直角坐標系中,已知則點關于平面的對稱點的坐標為()A. B.C. D.5.下圖稱為弦圖,是我國古代三國時期趙爽為《周髀算經(jīng)》作注時為證明勾股定理所繪制,我們新教材中利用該圖作為“()”的幾何解釋A.如果,,那么B.如果,那么C.對任意實數(shù)和,有,當且僅當時等號成立D.如果,那么6.曲線的一個焦點F到兩條漸近線的垂線段分別為FA,F(xiàn)B,O為坐標原點,若四邊形OAFB是菱形,則雙曲線C的離心率等于()A. B.C.2 D.7.已知是橢圓右焦點,點在橢圓上,線段與圓相切于點,且,則橢圓的離心率等于()A. B.C. D.8.“”是“”的A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件9.已知函數(shù),在上隨機任取一個數(shù),則的概率為()A. B.C. D.10.過點且與雙曲線有相同漸近線的雙曲線方程為()A B.C. D.11.橢圓=1的一個焦點為F,過原點O作直線(不經(jīng)過焦點F)與橢圓交于A,B兩點,若△ABF的面積是20,則直線AB的斜率為()A. B.C. D.12.若等軸雙曲線C過點,則雙曲線C的頂點到其漸近線的距離為()A.1 B.C. D.2二、填空題:本題共4小題,每小題5分,共20分。13.已知數(shù)列是公差不為0的等差數(shù)列,,且,,成等比數(shù)列.(1)求數(shù)列的通項公式;(2)設數(shù)列的前項和為,求.14.生活中有這樣的經(jīng)驗:三腳架在不平的地面上也可以穩(wěn)固地支撐一部照相機.這個經(jīng)驗用我們所學的數(shù)學公理可以表述為___________.15.過橢圓的一個焦點的弦與另一個焦點圍成的的周長是______16.已知,且,則的最小值為____________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖在四棱錐中,底面是菱形,,平面平面,,,為的中點,是棱上的一點,且.(1)求證:平面;(2)求二面角的余弦值.18.(12分)如圖,正方體的棱長為4,E,F(xiàn)分別是上的點,且.(1)求與平面所成角的正切值;(2)求證:.19.(12分)已知集合,.(1)當a=3時,求.(2)若“”是“x∈A”的充分不必要條件,求實數(shù)a的取值范圍.20.(12分)已知數(shù)列的前項和為,并且滿足(1)求數(shù)列的通項公式;(2)若,數(shù)列的前項和為,求證:21.(12分)若存在常數(shù),使得對任意,,均有,則稱為有界集合,同時稱為集合的上界.(1)設,,試判斷A、B是否為有界集合,并說明理由;(2)已知常數(shù),若函數(shù)為有界集合,求集合的上界最小值.22.(10分)曲線的左、右焦點分別為,左、右頂點分別為,C上的點M滿足,且直線的斜率之積等于(1)求C的方程;(2)過點的直線l交C于A,B兩點,若,其中,證明:

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】由題意首先確定函數(shù)的奇偶性,然后考查函數(shù)在特殊點的函數(shù)值排除錯誤選項即可確定函數(shù)的圖象.【詳解】由函數(shù)的解析式可得:,則函數(shù)為奇函數(shù),其圖象關于坐標原點對稱,選項CD錯誤;當時,,選項B錯誤.故選:A.【點睛】函數(shù)圖象的識辨可從以下方面入手:(1)從函數(shù)的定義域,判斷圖象的左右位置;從函數(shù)的值域,判斷圖象的上下位置.(2)從函數(shù)的單調(diào)性,判斷圖象的變化趨勢.(3)從函數(shù)的奇偶性,判斷圖象的對稱性.(4)從函數(shù)的特征點,排除不合要求的圖象.利用上述方法排除、篩選選項2、B【解析】把雙曲線的標準方程中的1換成0,可得其漸近線的方程【詳解】雙曲線的漸近線方程是,即,故選B【點睛】本題考查了雙曲線的標準方程與簡單的幾何性質(zhì)等知識,屬于基礎題3、C【解析】求得、、的值,由此可得出所求橢圓的方程.【詳解】由題意可得,解得,,由于橢圓的對稱軸是坐標軸,則該橢圓的方程為或.故選:C.4、D【解析】根據(jù)空間直角坐標系的對稱性可得答案.【詳解】根據(jù)空間直角坐標系的對稱性可得關于平面的對稱點的坐標為,故選:D.5、C【解析】設圖中直角三角形邊長分別為a,b,則斜邊為,則可表示出陰影面積和正方形面積,根據(jù)圖象關系,可得即可得答案.【詳解】設圖中全等的直角三角形的邊長分別為a,b,則斜邊為,如圖所示:則四個直角三角形的面積為,正方形的面積為,由圖象可得,四個直角三角形面積之和小于等于正方形的面積,所以,當且僅當時等號成立,所以對任意實數(shù)和,有,當且僅當時等號成立.故選:C6、A【解析】依題意可得為正方形,即可得到,從而得到雙曲線的漸近線為,即可求出雙曲線的離心率;【詳解】解:依題意,,且四邊形為菱形,所以為正方形,所以,即雙曲線的漸近線為,即,所以;故選:A7、A【解析】結合橢圓的定義、勾股定理列方程,化簡求得,由此求得離心率.【詳解】圓的圓心為,半徑為.設左焦點為,連接,由于,所以,所以,所以,由于,所以,所以,,.故選:A8、B【解析】因但9、A【解析】先解不等式,然后由區(qū)間長度比可得.【詳解】解不等式,得,所以,即的概率為.故選:A10、C【解析】設與雙曲線有相同漸近線的雙曲線方程為,代入點的坐標,求出的值,即可的解.【詳解】設與雙曲線有相同漸近線的雙曲線方程為,代入點,得,解得,所以所求雙曲線方程為,即故選:C.11、A【解析】分情況討論當直線AB的斜率不存在時,可求面積,檢驗是否滿足條件,當直線AB的斜率存在時,可設直線AB的方程y=kx,聯(lián)立橢圓方程,可求△ABF2的面積為S=2代入可求k【詳解】由橢圓=1,則焦點分別為F1(-5,0),F(xiàn)2(5,0),不妨取F(5,0)①當直線AB的斜率不存在時,直線AB的方程為x=0,此時AB=4,=AB?5=×5=10,不符合題意;②可設直線AB的方程y=kx,由,可得(4+9k2)x2=180,∴xA=6,yA=,∴△ABF2的面積為S=2=2××5×=20,∴k=±故選:A12、A【解析】先求出雙曲線C的標準方程,再求頂點到其漸近線的距離.【詳解】設等軸雙曲線C的標準方程為,因為點在雙曲線上,所以,解得,所以雙曲線C的標準方程為,故上頂點到其一條漸近線的距離為.故選:A二、填空題:本題共4小題,每小題5分,共20分。13、(1);(2).【解析】(1)根據(jù),且,,成等比數(shù)列,利用等比中項由,求得公差即可.(2)由(1)得到,再利用裂項相消法求解.【詳解】(1)設數(shù)列的公差為d,因為,且,,成等比數(shù)列,所以,即,解得或(舍去),所以數(shù)列的通項公式;(2)由(1)知:,所以.【點睛】方法點睛:求數(shù)列的前n項和的方法(1)公式法:①等差數(shù)列的前n項和公式,②等比數(shù)列的前n項和公式;(2)分組轉化法:把數(shù)列的每一項分成兩項或幾項,使其轉化為幾個等差、等比數(shù)列,再求解(3)裂項相消法:把數(shù)列的通項拆成兩項之差求和,正負相消剩下首尾若干項(4)倒序相加法:把數(shù)列分別正著寫和倒著寫再相加,即等差數(shù)列求和公式的推導過程的推廣(5)錯位相減法:如果一個數(shù)列的各項是由一個等差數(shù)列和一個等比數(shù)列對應項之積構成的,則這個數(shù)列的前n項和用錯位相減法求解.(6)并項求和法:一個數(shù)列的前n項和中,可兩兩結合求解,則稱之為并項求和.形如an=(-1)nf(n)類型,可采用兩項合并求解14、不在同一直線上的三點確定一個平面【解析】根據(jù)題意結合平面公理2即可得出答案.【詳解】解:根據(jù)題意可知,三腳架與地面接觸的三個點不在同一直線上,則為數(shù)學中的平面公理2:不在同一直線上的三點確定一個平面.故答案為:不在同一直線上的三點確定一個平面.15、【解析】求得,利用橢圓的定義可得出的周長.【詳解】在橢圓中,,由題意可知,的周長為.故答案為:.16、16【解析】根據(jù),且,利用“1”的代換將,轉化為,再利用基本不等式求解.【詳解】因為,且,所以,當且僅當,,即時,取等號.所以的最小值為16.故答案為:16【點睛】本題主要考查基本不等式求最值,還考查了運算求解的能力,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2).【解析】(1)推導出PQ⊥AD,從而PQ⊥平面ABCD,連接AC,交BQ于N,連接MN,則AQ∥BC,推導出MN∥PA,由此能證明PA∥平面BMQ(2)連結BD,以Q為坐標原點,以QA、QB、QP分別為x軸,y軸,z軸,建立空間直角坐標系,利用向量法能求出二面角M﹣BQ﹣P的余弦值【詳解】(1)由已知PA=PD,Q為AD的中點,∴PQ⊥AD,又∵平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD,PQ?面PAD,∴PQ⊥平面ABCD,連接AC,交BQ于N,連接MN,∵底面ABCD是菱形,∴AQ∥BC,∴△ANQ∽△BCN,,又,∴,∴MN∥PA,又MN?平面BMQ,PA?平面BMQ,∴PA∥平面BMQ(2)連結BD,∵底面底面是菱形,∴△ABD是正三角形,∴由(1)知PQ⊥平面ABCD,∴PQ⊥AD,PQ⊥BQ,以Q為坐標原點,以QA、QB、QP分別為x軸,y軸,z軸,建立空間直角坐標系,則Q(0,0,0),A(1,0,0),B(0,,0),P(0,0,),設平面BMQ的法向量=(x,y,z),∴,由(1)知MN∥PA,∴,∴,取z=1,得,平面BQP的法向量,設二面角M﹣BQ﹣P的平面角為θ,則cosθ=,∴二面角M﹣BQ﹣P的余弦值為18、(1);(2)證明見解析.【解析】(1)在正方體中,平面,連接,則為與平面所成的角,在直角三角形,求出即可;(2)∵是正方體,又是空間垂直問題,∴易采用向量法,∴建立如圖所示的空間直角坐標系,欲證,只須證,再用向量數(shù)量積公式求解即可.【小問1詳解】在正方體中,平面,連接,則為與平面所成的角,又,,,∴;【小問2詳解】如圖,以為坐標原點,直線、、分別軸、軸、軸,建立空間直角坐標系.則∴,,∴,∴.19、(1)(2)【解析】(1)解不等式求出集合、,然后根據(jù)交集的運算法則求交集;(2)解不等式求出集合、,求出,然后根據(jù)充分不必要性列出不等式組求解.【小問1詳解】解:由題意得:當時,可解得集合的解集為由可解得或故.【小問2詳解】的解集為又又“”是“x∈A”的充分不必要條件解得:,故實數(shù)a的取值范圍20、(1);(2)證明見解析.【解析】(1)利用和項可求得的通項公式,注意別漏了說明;(2)先用錯位相減法求出數(shù)列的前項和,從而可知【詳解】(1),①當時,,②由①—②可得:,且數(shù)列是首項為1,公差為2的等差數(shù)列,即(2)由(1)知數(shù)列,,則,①∴,②由①﹣②得,∴,.【點睛】本題主要考查給出的一個關系式求數(shù)列的通項公式以及用錯位相減法求數(shù)列的前n項和.21、(1)A不是有界集合,B是有界集合,理由見解析(2)【解析】(1)解不等式求得集合A;由,根據(jù)指數(shù)函數(shù)的性質(zhì)求得集合B,由此可得結論;(2)由函數(shù),得出函數(shù)單調(diào)遞減,即有,分和兩種情況討論,求得集合的上界,再由集合的上界函數(shù)的單調(diào)性可求得集合的上界的最小值.【小問1詳解】解:由得,即,,對任意一個,都有一個,故不是有界集合;,,,,是有界集合,上界為1;【小問2詳解】解:,因為,所以函數(shù)單調(diào)遞減,,因為函數(shù)為有界集合,所以分兩種情況討論:當,即時,集合的上界,當時,不等式為;當時,不等式為;當時,不等式為,即時,集合的上界,當,即時,集合的上界,同上解不等式得的解為,即時,集合的上界,綜上得時,集合的上界;時,集合的上界.時,集合的上界是一個減函數(shù),所以此時,時,集合的上界是增函數(shù),所以,所以集合的上界最小值為;22、(1)(2)證明見解析【解析】(1)由橢圓定義可得到,再利用斜率公式及直線的斜率之積等于,列出方程,化簡對比系數(shù)可得;(2)分直線l的斜率為0和不為0兩種情況討論,利用可得到T在定直線上,且該直

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論