版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024屆貴州省銅仁市西片區(qū)高中教育聯盟數學高二上期末教學質量檢測模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.即不充分又不必要條件2.若雙曲線的離心率為,則其漸近線方程為A.y=±2x B.y=C. D.3.已知直線:和直線:,拋物線上一動點P到直線和直線的距離之和的最小值是()A. B.C. D.4.若空間中n個不同的點兩兩距離都相等,則正整數n的取值A.至多等于3 B.至多等于4C.等于5 D.大于55.已知函數為偶函數,則在處的切線方程為()A. B.C. D.6.已知,是雙曲線的左右焦點,過的直線與曲線的右支交于兩點,則的周長的最小值為()A. B.C. D.7.在正方體中中,,若點P在側面(不含邊界)內運動,,且點P到底面的距離為3,則異面直線與所成角的余弦值是()A. B.C. D.8.設實數x,y滿足約束條件則的最小值()A.5 B.C. D.89.已知是偶函數的導函數,.若時,,則使得不等式成立的的取值范圍是()A. B.C. D.10.已知雙曲線:的左、右焦點分別為,,過點且斜率為的直線與雙曲線在第二象限的交點為,若,則雙曲線的離心率是()A. B.C. D.11.把紅、黑、藍、白4張紙牌隨機地分發(fā)給甲、乙、丙、丁4人,每人分得1張,事件“甲分得紅牌”與事件“乙分得紅牌”的關系是()A.既不互斥也不對立 B.互斥又對立C.互斥但不對立 D.對立12.已知向量與平行,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知拋物線:,過焦點作傾斜角為的直線與交于,兩點,,在的準線上的投影分別為,兩點,則__________.14.已知橢圓和雙曲線有相同的焦點和,設橢圓和雙曲線的離心率分別為,,為兩曲線的一個公共點,且(為坐標原點).若,則的取值范圍是______15.已知數列,點在函數的圖象上,則數列的前10項和是______16.若圓與圓相交,則的取值范圍是__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知命題p:實數x滿足;命題q:實數x滿足.若p是q的必要條件,求實數a的取值范圍18.(12分)新冠肺炎疫情發(fā)生以來,我國某科研機構開展應急科研攻關,研制了一種新型冠狀病毒疫苗,并已進入二期臨床試驗.根據普遍規(guī)律,志愿者接種疫苗后體內會產生抗體,人體中檢測到抗體,說明有抵御病毒的能力.通過檢測,用表示注射疫苗后的天數,表示人體中抗體含量水平(單位:,即:百萬國際單位/毫升),現測得某志愿者的相關數據如下表所示:天數123456抗體含量水平510265096195根據以上數據,繪制了散點圖.(1)根據散點圖判斷,與(a,b,c,d均為大于0的實數)哪一個更適宜作為描述y與x關系的回歸方程類型?(給出判斷即可,不必說明理由)(2)根據(1)的判斷結果求出y關于x的回歸方程,并預測該志愿者在注射疫苗后的第10天的抗體含量水平值;(3)從這位志愿者前6天的檢測數據中隨機抽取4天的數據作進一步的分析,記其中的y值大于50的天數為X,求X的分布列與數學期望.參考數據:3.5063.673.4917.509.4912.95519.014023.87其中.參考公式:用最小二乘法求經過點,,,,的線性回歸方程的系數公式,;.19.(12分)已知數列中,,.(1)求證:數列是等差數列,并求數列的通項公式;(2)求數列的前項和.20.(12分)已知函數(a為非零常數)(1)若f(x)在處的切線經過點(2,ln2),求實數a的值;(2)有兩個極值點,.①求實數a的取值范圍;②若,證明:.21.(12分)寫出下列命題的否定,并判斷它們的真假:(1):任意兩個等邊三角形都是相似的;(2):,.22.(10分)已知橢圓的離心率為,右焦點為,斜率為1的直線與橢圓交于兩點,以為底邊作等腰三角形,頂點為.(1)求橢圓的方程;(2)求的面積.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】根據充分條件和必要條件的定義判斷即可求解.【詳解】由可得或,所以由得不出,故充分性不成立,由可得,故必要性成立,所以“”是“”的必要不充分條件,故選:B.2、B【解析】雙曲線的離心率為,漸進性方程為,計算得,故漸進性方程為.【考點定位】本小題考查了離心率和漸近線等雙曲線的性質.3、A【解析】根據已知條件,結合拋物線的定義,可得點P到直線和直線的距離之和,當B,P,F三點共線時,最小,再結合點到直線的距離公式,即可求解【詳解】∵拋物線,∴拋物線的準線為,焦點為,∴點P到準線的距離PA等于點P到焦點F的距離PF,即,∴點P到直線和直線的距離之和,∴當B,P,F三點共線時,最小,∵,∴,∴點P到直線和直線的距離之和的最小值為故選:A4、B【解析】先考慮平面上的情況:只有三個點的情況成立;再考慮空間里,只有四個點的情況成立,注意運用外接球和三角形三邊的關系,即可判斷解:考慮平面上,3個點兩兩距離相等,構成等邊三角形,成立;4個點兩兩距離相等,由三角形的兩邊之和大于第三邊,則不成立;n大于4,也不成立;空間中,4個點兩兩距離相等,構成一個正四面體,成立;若n>4,由于任三點不共線,當n=5時,考慮四個點構成的正四面體,第五個點,與它們距離相等,必為正四面體的外接球的球心,由三角形的兩邊之和大于三邊,故不成立;同理n>5,不成立故選B點評:本題考查空間幾何體的特征,主要考查空間兩點的距離相等的情況,注意結合外接球和三角形的兩邊與第三邊的關系,屬于中檔題和易錯題5、A【解析】根據函數是偶函數可得,可求出,求出函數在處的導數值即為切線斜率,即可求出切線方程.【詳解】函數為偶函數,,即,解得,,則,,且,切線方程為,整理得.故選:A.【點睛】本題考查函數奇偶性的應用,考查利用導數求切線方程,屬于基礎題.6、C【解析】根據雙曲線的定義和性質,當弦垂直于軸時,即可求出三角形的周長的最小值.【詳解】由雙曲線可知:的周長為.當軸時,周長最小值為故選:C7、A【解析】如圖建立空間直角坐標系,先由,且點P到底面的距離為3,確定點P的位置,然后利用空間向量求解即可【詳解】如圖,以為坐標原點,以所在的直線分別為軸,建立空間直角坐標系,則,所以,所以,所以,因為,所以平面,因為平面平面,點P在側面(不含邊界)內運動,,所以,因為點P到底面的距離為3,所以,所以,因為,所以異面直線與所成角的余弦值為,故選:A8、B【解析】做出,滿足約束條件的可行域,結合圖形可得答案.【詳解】做出,滿足約束條件可行域如圖,化為,平移直線,當直線經過點時有最小值,由得,所以的最小值為.故選:B.9、C【解析】構造函數,分析函數在上的單調性,將所求不等式變形為,可得出關于的不等式,即可得解.【詳解】構造函數,其中,則,所以,函數為上的奇函數,當時,,且不恒為零,所以,函數在上為增函數,且該函數在上也為增函數,故函數在上為增函數,因為,則,由得,可得,解得故選:C.10、B【解析】根據得到三角形為等腰三角形,然后結合雙曲線的定義得到,設,進而作,得出,由此求出結果【詳解】因為,所以,即所以,由雙曲線的定義,知,設,則,易得,如圖,作,為垂足,則,所以,即,即雙曲線的離心率為.故選:B11、C【解析】根據互斥事件、對立事件的定義可得答案.【詳解】把紅、黑、藍、白4張紙牌隨機地分發(fā)給甲、乙、丙、丁4人,每人分得1張,事件“甲分得紅牌”與事件“乙分得紅牌”不能同時發(fā)生,但能同時不發(fā)生,所以它們的關系是互斥但不對立.故選:C.12、D【解析】根據兩向量平行可求得、的值,即可得出合適的選項.【詳解】由已知,解得,,則.故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】設,則,將直線方程與拋物線方程聯立,結合韋達定理即得.【詳解】由拋物線:可知則焦點坐標為,∴過焦點且斜率為的直線方程為,化簡可得,設,則,由可得,所以則故答案為:14、【解析】設出半焦距c,用表示出橢圓的長半軸長、雙曲線的實半軸長,由可得為直角三角形,由此建立關系即可計算作答,【詳解】設橢圓的長半軸長為,雙曲線的實半軸長為,它們的半焦距為c,于是得,,由橢圓及雙曲線的對稱性知,不妨令焦點和在x軸上,點P在y軸右側,由橢圓及雙曲線定義得:,解得,,因,即,而O是線段的中點,因此有,則有,即,整理得:,從而有,即有,又,則有,即,解得,所以的取值范圍是.故答案為:【點睛】方法點睛:求解橢圓或雙曲線的離心率的三種方法:①定義法:通過已知條件列出方程組,求得值,根據離心率的定義求解離心率;②齊次式法:由已知條件得出關于的二元齊次方程,然后轉化為關于的一元二次方程求解;③特殊值法:通過取特殊值或特殊位置,求出離心率.15、【解析】將點代入可得,從而得,再由裂項相消法可求解.【詳解】由題意有,所以,所以數列的前10項和為:.故答案為:16、【解析】根據圓心距小于兩半徑之和,大于兩半徑之差的絕對值列出不等式解出即可.【詳解】圓的圓心為原點,半徑為,圓,即的圓心為,半徑為,由于兩圓相交,故,即,解得,即的取值范圍是,故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、【解析】由題設得是為真時的子集,即,法一:討論、,根據集合的包含關系求參數范圍;法二:利用在恒成立,結合參變分離及指數函數的單調性求參數范圍.【詳解】由,得,則命題對應的集合為,設命題對應的集合為,是的必要條件,則,由,得,又,法一:若時,,則,顯然成立;若時,,則,可得,綜上:法二:在恒成立,即,∵在單調遞減,∴.18、(1)(2),4023.87(3)分布列答案見解析,數學期望:【解析】(1)由于這些點分布在一條曲線的附近,從而可選出回歸方程,(2)設,,則建立w關于x的回歸方程,然后根據公式和表中的數據求解回歸方程即可,再將代入回歸方程可求得在注射疫苗后的第10天的抗體含量水平值,(3)由題意可知x的可能取值為0,1,2,然后求對應的概率,從而可求出分布列和期望【小問1詳解】根據散點圖可知這些點分布在一條曲線的附近,所以更適合作為描述y與x關系的回歸方程類型.【小問2詳解】設,變換后可得,設,建立w關于x的回歸方程,,所以所以w關于x的回歸方程為,所以,當時,,即該志愿者在注射疫苗后的第10天的抗體含量水平值約為4023.87miu/mL.【小問3詳解】由表格數據可知,第5,6天的y值大于50,故x的可能取值為0,1,2,,,,X的分布列為012.19、(1)證明見解析,(2)【解析】(1)由,取倒數得到,再利用等差數列的定義求解;(2)由(1)得到,利用錯位相減法求解.【小問1詳解】證明:由,以及,顯然,所以,即,所以數列是首項為,公差為的等差數列,所以,所以;【小問2詳解】由(1)可得,,所以數列的前項和①所以②則由②-①可得:,所以數列的前項和.20、(1)(2)①(0,1);②證明見解析【解析】小問1先求出切線方程,再將點(2,ln2),代入即可求出a的值;小問2的①通過求導,再結合函數的單調性求出a的取值范圍;②結合已知條件,構造新函數即可得到證明.【小問1詳解】,∴切線方程為,將點代入解得:【小問2詳解】①當時,即時,,f(x)在(-1,+∞)上單調遞增;f(x)無極值點,當時,由得,,故f(x)在(-1,-)上單調遞增,在(-,)上單調遞減,在(,+∞)上單調遞增,f(x)有兩個極值點;.當時,由得,,f(x)(,)上單調遞減,在(,+∞)上單調遞此時,f(x)有1個極值點,綜上,當時,f(x)有兩個極值點,即,即a的范圍是(0,1)②由(2)可知,又由可知,可得.要證,即證,即證,即證即證令函數,x(0,1),故t(x)在(0,1)上單調遞增,又所以在上恒成立,即所以.21、(1)存在兩個等邊三角形不是相似的,假命題(2),真命題【解析】根據全稱命題與存在性命題的關系,準確改寫,即可求解.【小問1詳解】解:命題“任意兩個等邊三角形都是相似的”是一個全稱命題根據全稱命題與存在性命題的關系,可得其否定“存在兩個等邊三角形不是相似的”,命題為假命題.【小問2詳解】解:根據全稱命題與存在性命題關系,可得:命題的否定為.因為,所以命題為真命題.22、(1)(2)【解析】(1)根據橢圓的簡單幾何性質知,又,寫出橢圓的方程;(2)先斜截式設出直線,聯立方程組,根據直線與圓錐曲線的位置關系,可得出中點為的坐標,再根據△為等腰三角形知,從而得的斜率為,求出,寫出:,并計算,再根據點到直線距離公式求高,即可計算出面積【詳解】(1)由已知得,,解得,又,所以橢圓
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年智能快遞配送合同標準范本
- 2025年家具定制服務居間合同
- 2025年委托期貨操作合同
- 2025年度個人旅游資金過橋借款協(xié)議2篇
- 2025年物流企業(yè)產品研發(fā)與技術支持合同3篇
- 二零二五版門衛(wèi)人員勞動合同及職業(yè)素養(yǎng)提升協(xié)議4篇
- 2025年物業(yè)管理公司風險管理與保險采購合同3篇
- 2025年度個人信用卡透支額度調整協(xié)議3篇
- 2025年金融產品銷售擔保合同書規(guī)范文本2篇
- 建設公司合同范本(2篇)
- 電纜擠塑操作手冊
- 浙江寧波鄞州區(qū)市級名校2025屆中考生物全真模擬試卷含解析
- IATF16949基礎知識培訓教材
- 【MOOC】大學生創(chuàng)新創(chuàng)業(yè)知能訓練與指導-西北農林科技大學 中國大學慕課MOOC答案
- 勞務派遣公司員工考核方案
- 基礎生態(tài)學-7種內種間關系
- 2024年光伏農田出租合同范本
- 《阻燃材料與技術》課件 第3講 阻燃基本理論
- HIV感染者合并慢性腎病的治療指南
- 診所抗菌藥物管理制度
- 招標監(jiān)督報告
評論
0/150
提交評論