2024屆黑龍江省雙鴨山市第三十一中學(xué)高二上數(shù)學(xué)期末監(jiān)測(cè)模擬試題含解析_第1頁(yè)
2024屆黑龍江省雙鴨山市第三十一中學(xué)高二上數(shù)學(xué)期末監(jiān)測(cè)模擬試題含解析_第2頁(yè)
2024屆黑龍江省雙鴨山市第三十一中學(xué)高二上數(shù)學(xué)期末監(jiān)測(cè)模擬試題含解析_第3頁(yè)
2024屆黑龍江省雙鴨山市第三十一中學(xué)高二上數(shù)學(xué)期末監(jiān)測(cè)模擬試題含解析_第4頁(yè)
2024屆黑龍江省雙鴨山市第三十一中學(xué)高二上數(shù)學(xué)期末監(jiān)測(cè)模擬試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩12頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2024屆黑龍江省雙鴨山市第三十一中學(xué)高二上數(shù)學(xué)期末監(jiān)測(cè)模擬試題注意事項(xiàng)1.考生要認(rèn)真填寫(xiě)考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書(shū)寫(xiě)在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知圓與拋物線的準(zhǔn)線相切,則實(shí)數(shù)p的值為()A.2 B.6C.3或8 D.2或62.已知一個(gè)幾何體的三視圖如圖,則其外接球的體積為()A. B.C. D.3.已知?jiǎng)狱c(diǎn)的坐標(biāo)滿(mǎn)足方程,則的軌跡方程是()A. B.C. D.4.為推動(dòng)黨史學(xué)習(xí)教育各項(xiàng)工作扎實(shí)開(kāi)展,營(yíng)造“學(xué)黨史、悟思想、辦實(shí)事、開(kāi)新局”的濃厚氛圍,某校黨委計(jì)劃將中心組學(xué)習(xí)、專(zhuān)題報(bào)告會(huì)、黨員活動(dòng)日、主題班會(huì)、主題團(tuán)日這五種活動(dòng)分5個(gè)階段安排,以推動(dòng)黨史學(xué)習(xí)教育工作的進(jìn)行,若主題班會(huì)、主題團(tuán)日這兩個(gè)階段相鄰,且中心組學(xué)習(xí)必須安排在前兩階段并與黨員活動(dòng)日不相鄰,則不同的安排方案共有()A.10種 B.12種C.16種 D.24種5.已知拋物線內(nèi)一點(diǎn),過(guò)點(diǎn)的直線交拋物線于,兩點(diǎn),且點(diǎn)為弦的中點(diǎn),則直線的方程為()A. B.C D.6.已知橢圓+=1(a>b>0)的右焦點(diǎn)為F(3,0),過(guò)點(diǎn)F的直線交橢圓于A、B兩點(diǎn).若AB的中點(diǎn)坐標(biāo)為(1,-1),則E的方程為A.+=1 B.+=1C.+=1 D.+=17.設(shè),是雙曲線()的左、右焦點(diǎn),是坐標(biāo)原點(diǎn).過(guò)作的一條漸近線的垂線,垂足為.若,則的離心率為A. B.C. D.8.在等差數(shù)列中,若,則()A.5 B.6C.7 D.89.下面四個(gè)條件中,使成立的充分而不必要的條件是A. B.C. D.10.設(shè)等差數(shù)列的前項(xiàng)和為,若,則的值為()A.28 B.39C.56 D.11711.設(shè)為坐標(biāo)原點(diǎn),直線與雙曲線的兩條漸近線分別交于兩點(diǎn),若的面積為8,則的焦距的最小值為()A.4 B.8C.16 D.3212.在等比數(shù)列中,,,則()A.2 B.4C.6 D.8二、填空題:本題共4小題,每小題5分,共20分。13.等差數(shù)列的公差,是其前n項(xiàng)和,給出下列命題:若,且,則和都是中的最大項(xiàng);給定n,對(duì)于一些,都有;存在使和同號(hào);.其中正確命題的序號(hào)為_(kāi)__________.14.某足球俱樂(lè)部選拔青少年隊(duì)員,每人要進(jìn)行3項(xiàng)測(cè)試.甲隊(duì)員每項(xiàng)測(cè)試通過(guò)的概率均為,且不同測(cè)試之間相互獨(dú)立,設(shè)他通過(guò)的測(cè)試項(xiàng)目數(shù)為X,則_________15.已知拋物線的焦點(diǎn)為F,過(guò)F的直線l交拋物線C于AB兩點(diǎn),且,則p的值為_(kāi)_____16.已知函數(shù)的導(dǎo)函數(shù)為,,,則的解集為_(kāi)__________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)在棱長(zhǎng)為1的正方體ABCD-A1B1C1D1中,求平面ACD1的一個(gè)法向量.18.(12分)已知橢圓C的兩焦點(diǎn)分別為,長(zhǎng)軸長(zhǎng)為6⑴求橢圓C的標(biāo)準(zhǔn)方程;⑵已知過(guò)點(diǎn)(0,2)且斜率為1的直線交橢圓C于A、B兩點(diǎn),求線段AB的長(zhǎng)度19.(12分)已知數(shù)列的前n項(xiàng)和為,且(1)求證:數(shù)列為等比數(shù)列;(2)記,求數(shù)列的前n項(xiàng)和為20.(12分)已知數(shù)列滿(mǎn)足(1)證明數(shù)列是等比數(shù)列,并求數(shù)列的通項(xiàng)公式;(2)令,求數(shù)列的前項(xiàng)和21.(12分)在直三棱柱中,、、、分別為中點(diǎn),.(1)求證:平面(2)求二面角的余弦值22.(10分)如圖所示,平面ABCD,四邊形AEFB為矩形,,,(1)求證:平面ADE;(2)求平面CDF與平面AEFB所成銳二面角的余弦值

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】由拋物線準(zhǔn)線與圓相切,結(jié)合拋物線方程,令求切線方程且拋物線準(zhǔn)線方程為,即可求參數(shù)p.【詳解】圓的標(biāo)準(zhǔn)方程為:,故當(dāng)時(shí),有或,所以或,得或6故選:D2、D【解析】根據(jù)三視圖還原幾何體,將幾何體補(bǔ)成長(zhǎng)方體,計(jì)算出幾何體的外接球直徑,結(jié)合球體體積公式即可得解.【詳解】根據(jù)三視圖還原原幾何體,如下圖所示:由圖可知,該幾何體三棱錐,且平面,將三棱錐補(bǔ)成長(zhǎng)方體,所以,三棱錐的外接球直徑為,故,因此,該幾何體的外接球的體積為.故選:D【點(diǎn)睛】方法點(diǎn)睛:空間幾何體與球接、切問(wèn)題的求解方法(1)求解球與棱柱、棱錐接、切問(wèn)題時(shí),一般過(guò)球心及接、切點(diǎn)作截面,把空間問(wèn)題轉(zhuǎn)化為平面圖形與圓的接、切問(wèn)題,再利用平面幾何知識(shí)尋找?guī)缀沃性亻g的關(guān)系求解(2)若球面上四點(diǎn)P,A,B,C構(gòu)成的三條線段兩兩互相垂直,一般把有關(guān)元素“補(bǔ)形”成為一個(gè)球內(nèi)接長(zhǎng)方體,利用求解3、C【解析】此方程表示點(diǎn)到點(diǎn)的距離與到點(diǎn)的距離之差為8,而這正好符合雙曲線的定義,點(diǎn)的軌跡是雙曲線的右支,,的軌跡方程是,故選C.4、A【解析】對(duì)中心組學(xué)習(xí)所在的階段分兩種情況討論得解.【詳解】解:如果中心組學(xué)習(xí)在第一階段,主題班會(huì)、主題團(tuán)日在第二、三階段,則其它活動(dòng)有2種方法;主題班會(huì)、主題團(tuán)日在第三、四階段,則其它活動(dòng)有1種方法;主題班會(huì)、主題團(tuán)日在第四、五階段,則其它活動(dòng)有1種方法,則此時(shí)共有種方法;如果中心組學(xué)習(xí)在第二階段,則第一階段只有1種方法,后面的三個(gè)階段有種方法.綜合得不同的安排方案共有10種.故選:A5、B【解析】利用點(diǎn)差法求出直線斜率,即可得出直線方程.【詳解】設(shè),則,兩式相減得,即,則直線方程為,即.故選:B.6、D【解析】設(shè)、,所以,運(yùn)用點(diǎn)差法,所以直線的斜率為,設(shè)直線方程為,聯(lián)立直線與橢圓的方程,所以;又因?yàn)?,解?【考點(diǎn)定位】本題考查直線與圓錐曲線的關(guān)系,考查學(xué)生的化歸與轉(zhuǎn)化能力.7、B【解析】分析:由雙曲線性質(zhì)得到,然后在和在中利用余弦定理可得詳解:由題可知在中,在中,故選B.點(diǎn)睛:本題主要考查雙曲線的相關(guān)知識(shí),考查了雙曲線的離心率和余弦定理的應(yīng)用,屬于中檔題8、B【解析】由得出.【詳解】由可得,故選:B9、A【解析】由,但無(wú)法得出,A滿(mǎn)足;由、均無(wú)法得出,不滿(mǎn)足“充分”;由,不滿(mǎn)足“不必要”.考點(diǎn):不等式性質(zhì)、充分必要性.10、B【解析】由已知結(jié)合等差數(shù)列的求和公式及等差數(shù)列的性質(zhì)即可求解.【詳解】因?yàn)榈炔顢?shù)列中,,則.故選:B.11、B【解析】因?yàn)椋傻秒p曲線的漸近線方程是,與直線聯(lián)立方程求得,兩點(diǎn)坐標(biāo),即可求得,根據(jù)的面積為,可得值,根據(jù),結(jié)合均值不等式,即可求得答案.【詳解】雙曲線的漸近線方程是直線與雙曲線的兩條漸近線分別交于,兩點(diǎn)不妨設(shè)為在第一象限,在第四象限聯(lián)立,解得故聯(lián)立,解得故面積為:雙曲線其焦距為當(dāng)且僅當(dāng)取等號(hào)的焦距的最小值:故選:B.【點(diǎn)睛】本題主要考查了求雙曲線焦距的最值問(wèn)題,解題關(guān)鍵是掌握雙曲線漸近線的定義和均值不等式求最值方法,在使用均值不等式求最值時(shí),要檢驗(yàn)等號(hào)是否成立,考查了分析能力和計(jì)算能力,屬于中檔題.12、D【解析】由等比中項(xiàng)轉(zhuǎn)化得,可得,求解基本量,由等比數(shù)列通項(xiàng)公式即得解【詳解】設(shè)公比為,則由,得,即故,解得故選:D二、填空題:本題共4小題,每小題5分,共20分。13、【解析】對(duì),根據(jù)數(shù)列的單調(diào)性和可判斷;對(duì)和,利用等差數(shù)列的通項(xiàng)公式可直接推導(dǎo);對(duì),利用等差數(shù)列的前項(xiàng)和可直接推導(dǎo).【詳解】不妨設(shè)等差數(shù)列的首項(xiàng)為對(duì),,可得:,解得:,即又,則是遞減的,則中的前5項(xiàng)均為正數(shù),所以和都是中的最大項(xiàng),故正確;對(duì),,故有:,故正確;對(duì),,又,則,說(shuō)明不存在使和同號(hào),故錯(cuò)誤;對(duì),有:故并不是恒成立的,故錯(cuò)誤故答案為:14、【解析】根據(jù)二項(xiàng)分布的方差公式即可求出【詳解】因?yàn)椋怨蚀鸢笧椋?5、3【解析】根據(jù)拋物線焦點(diǎn)弦性質(zhì)求解,或聯(lián)立l與拋物線方程,表示出,求其最值即可.【詳解】已知,設(shè),,,則,∵,所以,,∴,當(dāng)且僅當(dāng)m=0時(shí),取..故答案為:3.16、【解析】根據(jù),構(gòu)造函數(shù),利用其單調(diào)性求解.【詳解】因?yàn)?,所以,令,則,,所以是減函數(shù),又,即,,所以,所以,則的解集為故答案為:三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、【解析】建立空間直角坐標(biāo)系,由向量法求法向量即可.【詳解】如圖,建立空間直角坐標(biāo)系,則設(shè)平面ACD1的法向量.,又為平面ACD1的一個(gè)法向量,化簡(jiǎn)得令x=1,得y=z=1.平面ACD1的一個(gè)法向量.【點(diǎn)睛】本題主要考查了求平面的法向量,屬于中檔題.18、(1);(2)【解析】(1)由焦點(diǎn)坐標(biāo)可求c值,a值,然后可求出b的值.進(jìn)而求出橢圓C的標(biāo)準(zhǔn)方程(2)先求出直線方程然后與橢圓方程聯(lián)立利用韋達(dá)定理及弦長(zhǎng)公式求出|AB|的長(zhǎng)度【詳解】解:⑴由,長(zhǎng)軸長(zhǎng)為6得:所以∴橢圓方程為⑵設(shè),由⑴可知橢圓方程為①,∵直線AB的方程為②把②代入①得化簡(jiǎn)并整理得所以又【點(diǎn)睛】本題考查橢圓的方程和性質(zhì),考查韋達(dá)定理及弦長(zhǎng)公式的應(yīng)用,考查運(yùn)算能力,屬于中檔題19、(1)證明見(jiàn)解析;(2).【解析】(1)由已知得,當(dāng)時(shí),兩式作差整理得,根據(jù)等比數(shù)列的定義可得證;(2)由(1)求得,,再運(yùn)用錯(cuò)位相減法可求得答案.【小問(wèn)1詳解】證明:因?yàn)?,……①,所以?dāng)時(shí),,當(dāng)時(shí)……②,則①-②可得,所以,因?yàn)?,所以?shù)列是以2為首項(xiàng),2為公比的等比數(shù)列【小問(wèn)2詳解】解:由(1)知,即,因?yàn)樗?,則……①,①得……②,①-②得,所以.20、(1)證明見(jiàn)解析,(2)【解析】(1)根據(jù)等比數(shù)列的定義證明數(shù)列是以為首項(xiàng),2為公比的等比數(shù)列,進(jìn)而求解得答案;(2)根據(jù)錯(cuò)位相減法求和即可.【小問(wèn)1詳解】解:數(shù)列滿(mǎn)足,∴數(shù)列是以為首項(xiàng),2為公比的等比數(shù)列,,即;∴【小問(wèn)2詳解】解:,,,,21、(1)見(jiàn)解析;(2)【解析】(1)取中點(diǎn),連接,根據(jù)直棱柱的特征,易知,再由、分別為的中點(diǎn),根據(jù)中位線定理,可得,得到四邊形為平行四邊形,再利用線面平行的判定定理證明.(2)取的中點(diǎn),連接,以為原點(diǎn),、、分別為、、軸建立空間直角坐標(biāo)系,則.,再分別求得平面和平面的一個(gè)法向量,利用面面角的向量公式求解.【詳解】(1)證明:如圖所示:取中點(diǎn),連接,易知,、分別為的中點(diǎn),∴,∴故四邊形為平行四邊形,∴,∵平面,平面,平面(2)取的中點(diǎn),連接,以為原點(diǎn),、、分別為、、軸建立如圖所示的空間直角坐標(biāo)系,如圖所示:則∴,設(shè)平面的法向量為,則,即,取,得,易知平面的一個(gè)法向量為,∴,∴二面角的余弦值為【點(diǎn)睛】本題主要考查線面平行的判定定理和面面角的向量求法,還考查了轉(zhuǎn)化化歸的思想和運(yùn)算求解的能力,屬于中檔題.22、(1)見(jiàn)解析(2)【解析】(1)根據(jù),,從而證明平面平面ADE,從而平面ADE。(2)以A為坐標(biāo)原點(diǎn),建立空間直角坐標(biāo)系,寫(xiě)出點(diǎn)的空間坐標(biāo)

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論