版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2024屆江蘇南京江浦高級中學數(shù)學高二上期末綜合測試模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知等比數(shù)列{an}中,,,則()A. B.1C. D.42.在數(shù)列中,,,則()A.985 B.1035C.2020 D.20703.已知點,Q是圓上的動點,則線段長的最小值為()A.3 B.4C.5 D.64.關于的不等式的解集為()A. B.C.或 D.5.已知橢圓方程為,則該橢圓的焦距為()A.1 B.2C. D.6.如圖,和分別是雙曲線的兩個焦點,和是以為圓心,以為半徑的圓與該雙曲線左支的兩個交點,且是等邊三角形,則雙曲線的離心率為()A. B.C. D.7.在正方體的12條棱中任選3條,其中任意2條所在的直線都是異面直線的概率為()A. B.C. D.8.已知拋物線的焦點為F,,點是拋物線上的動點,則當?shù)闹底钚r,=()A.1 B.2C. D.49.橢圓的長軸長是()A.3 B.6C.9 D.410.若復數(shù)的模為2,則的最大值為()A. B.C. D.11.為了了解某地區(qū)的名學生的數(shù)學成績,打算從中抽取一個容量為的樣本,現(xiàn)用系統(tǒng)抽樣的方法,需從總體中剔除個個體,在整個過程中,每個個體被剔除的概率和每個個體被抽取的概率分別為()A. B.C. D.12.甲、乙兩名同學同時從教室出發(fā)去體育館打球(路程相等),甲一半時間步行,一半時間跑步;乙一半路程步行,一半路程跑步.如果兩人步行速度、跑步速度均相等,則()A.甲先到體育館 B.乙先到體育館C.兩人同時到體育館 D.不確定誰先到體育館二、填空題:本題共4小題,每小題5分,共20分。13.橢圓C:的左、右焦點分別為,,P為橢圓上異于左右頂點的任意一點,、的中點分別為M、N,O為坐標原點,四邊形OMPN的周長為4,則的周長是_____14.若點O和點F分別為橢圓+=1的中心和左焦點,點P為橢圓上的任意一點,則·的最大值為________.15.在等比數(shù)列中,,則______16.已知蜥蜴的體溫與陽光照射的關系可近似為,其中為蜥蜴的體溫(單位:℃)為太陽落山后的時間(單位:).當________時,蜥蜴體溫的瞬時變化率為三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列的首項,前n項和為,且滿足.(1)求證:數(shù)列是等比數(shù)列;(2)設,求數(shù)列的前n項和.18.(12分)已知圓M的圓心在直線上,且圓心在第一象限,半徑為3,圓M被直線截得的弦長為4.(1)求圓M的方程;(2)設P是直線上的動點,證明:以MP為直徑的圓必過定點,并求所有定點的坐標.19.(12分)如圖四棱錐P-ABCD中,面PDC⊥面ABCD,∠ABC=∠DCB=,CD=2AB=2BC=2,△PDC是等邊三角形.(1)設面PAB面PDC=l,證明:l//平面ABCD;(2)線段PC內(nèi)是否存在一點E,使面ADE與面ABCD所成角的余弦值為,如果存在,求λ=的值,如果不存在,請說明理由.20.(12分)圓錐曲線的方程是.(1)若表示焦點在軸上的橢圓,求的取值范圍;(2)若表示焦點在軸上且焦距為的雙曲線,求的值.21.(12分)如圖,OP為圓錐的高,AB為底面圓O的直徑,C為圓O上一點,并且,E為劣弧上的一點,且,.(1)若E為劣弧的中點,求證:平面POE;(2)若E為劣弧的三等分點(靠近點),求平面PEO與平面PEB的夾角的余弦值.22.(10分)已知拋物線的焦點也是橢圓的一個焦點,如圖,過點任作兩條互相垂直的直線,,分別交拋物線于,,,四點,,分別為,的中點.(1)求的值;(2)求證:直線過定點,并求出該定點的坐標;(3)設直線交拋物線于,兩點,試求的最小值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】設公比為,然后由已知條件結(jié)合等比數(shù)列的通項公式列方程求出,從而可求出,【詳解】設公比為,因為等比數(shù)列{an}中,,,所以,所以,解得,所以,得故選:D2、A【解析】根據(jù)累加法得,,進而得.【詳解】解:因為所以,當時,,,……,,所以,將以上式子相加得,所以,,.當時,,滿足;所以,.所以.故選:A3、A【解析】根據(jù)圓的幾何性質(zhì)轉(zhuǎn)化為圓心與點的距離加上半徑即可得解.【詳解】圓的圓心為,半徑為,所以,圓上點在線段上時,,故選:A4、C【解析】求出不等式對應方程的根,結(jié)合不等式和二次函數(shù)的關系,即可得到結(jié)果.【詳解】不等式對應方程的兩根為,因為,故可得,根據(jù)二次不等式以及二次函數(shù)的關系可得不等式的解集為或.故選:C.【點睛】本題考查含參二次不等式的求解,屬基礎題.5、B【解析】根據(jù)橢圓中之間的關系,結(jié)合橢圓焦距的定義進行求解即可.【詳解】由橢圓的標準方程可知:,則焦距為,故選:B.6、D【解析】解:,設F1F2=2c,∵△F2AB是等邊三角形,∴∠AF1F2==30°,∴AF1=c,AF2=c,∴a=(c-c)2,e=2c(c-c)=+1,故選D7、B【解析】根據(jù)正方體的性質(zhì)確定3條棱兩兩互為異面直線的情況數(shù),結(jié)合組合數(shù)及古典概率的求法,求任選3條其中任意2條所在的直線是異面直線的概率.【詳解】如下圖,正方體中如:中任意2條所在的直線都是異面直線,∴這樣的3條直線共有8種情況,∴任選3條,其中任意2條所在的直線都是異面直線的概率為.故選:B.8、B【解析】根據(jù)拋物線定義,轉(zhuǎn)化,要使有最小值,只需最大,即直線與拋物線相切,聯(lián)立直線方程與拋物線方程,求出斜率,然后求出點坐標,即可求解.【詳解】由題知,拋物線的準線方程為,,過P作垂直于準線于,連接,由拋物線定義知.由正弦函數(shù)知,要使最小值,即最小,即最大,即直線斜率最大,即直線與拋物線相切.設所在的直線方程為:,聯(lián)立拋物線方程:,整理得:則,解得即,解得,代入得或,再利用焦半徑公式得故選:B.關鍵點睛:本題考查拋物線的性質(zhì),直線與拋物線的位置關系,解題的關鍵是要將取最小值轉(zhuǎn)化為直線斜率最大,再轉(zhuǎn)化為拋物線的切線,考查學生的轉(zhuǎn)化思想與運算求解能力,屬于中檔題.9、B【解析】根據(jù)橢圓方程有,即可確定長軸長.【詳解】由橢圓方程知:,故長軸長為6.故選:B10、A【解析】由題意得,表示以為圓心,2為半徑的圓,表示過原點和圓上的點的直線的斜率,由圖可知,當直線與圓相切時,取得最值,然后求出切線的斜率即可【詳解】因為復數(shù)的模為2,所以,所以其表示以為圓心,2為半徑的圓,如圖所示,表示過原點和圓上的點的直線的斜率,由圖可知,當直線與圓相切時,取得最值,設切線方程為,則,解得,所以的最大值為,故選:A11、D【解析】根據(jù)每個個體被抽取的概率都是相等的、被剔除的概率也都是相等的,分別由剔除的個數(shù)和抽取的樣本容量除以總體個數(shù)即可求解.【詳解】根據(jù)系統(tǒng)抽樣的定義和方法可知:每個個體被抽取的概率都是相等的,每個個體被剔除的概率也都是相等的,所以每個個體被剔除的概率為,每個個體被抽取的概率為,故選:D.12、A【解析】設出總路程與步行速度、跑步速度,表示出兩人所花時間后比較不等式大小【詳解】設總路程為,步行速度,跑步速度對于甲:,得對于乙:,當且僅當時等號成立,而,故,乙花時間多,甲先到體育館故選:A二、填空題:本題共4小題,每小題5分,共20分。13、【解析】先證明則四邊形OMPN是平行四邊形,進而根據(jù)橢圓定義求出a,再求出c,最后求出答案.【詳解】因為M,O,N分別為的中點,所以,則四邊形OMPN是平行四邊形,所以,由四邊形OMPN的周長為4可知,,即,則,于是的周長是.故答案為:.14、6【解析】由橢圓方程得到F,O的坐標,設P(x,y)(-2≤x≤2),利用數(shù)量積的坐標運算將·轉(zhuǎn)化為二次函數(shù)最值求解.【詳解】由橢圓+=1,可得F(-1,0),點O(0,0),設P(x,y)(-2≤x≤2),則·=x2+x+y2=x2+x+3=x2+x+3=(x+2)2+2,-2≤x≤2,當x=2時,·取得最大值6.故答案為:6【點睛】本題主要考查平面向量的數(shù)量積及應用以及橢圓的幾何性質(zhì)和二次函數(shù)求最值,還考查了運算求解的能力,屬于中檔題.15、【解析】利用等比數(shù)列性質(zhì)和通項公式可求得,根據(jù)可求得結(jié)果.【詳解】,又,,.故答案為:.16、5【解析】求得導函數(shù),令,計算即可得出結(jié)果.【詳解】,,令,得:.解得:.時刻min時,蜥蜴的體溫的瞬時變化率為故答案為:5.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】(1)當時,由,得,兩式相減化簡可得,再對等式兩邊同時減去1,化簡可證得結(jié)論,(2)由(1)得,然后利用分組求和可求出【小問1詳解】由已知得,.當時,.兩式相減得,.于是,即,又,,,所以滿足上式,所以對都成立,故數(shù)列是等比數(shù)列.【小問2詳解】由(1)得,,.18、(1);(2)證明見解析,定點和.【解析】(1)根據(jù)給定條件設出圓心坐標,再結(jié)合點到直線距離公式計算作答.(2)設點,求出圓的方程,結(jié)合方程求出其定點.【小問1詳解】因圓M的圓心在直線上,且圓心在第一象限,設圓心,且,圓心到直線的距離為,又由解得,從而,而,解得,所以圓M的方程為.【小問2詳解】由(1)知:,設點,,設動圓上任意一點當與點P,M都不重合時,,有,當與點P,M之一重合時,對應為零向量,也成立,,,,化簡得:,由,解得或,所以以MP為直徑的圓必過定點和.【點睛】方法點睛:待定系數(shù)法求圓的方程,由題設條件,列出等式,求出相關量.一般地,與圓心和半徑有關,選擇標準式,否則,選擇一般式.不論是哪種形式,都要確定三個獨立參數(shù),所以應該有三個獨立等式19、(1)證明見解析(2)存在【解析】(1)由已知可得∥,再由線面平行的判定可得∥平面,再由線面平行的性質(zhì)可得∥,再由線面平行的判定可得結(jié)論,(2)由已知條件可證得兩兩垂直,所以以為原點,所在的直線分別為軸建立空間直角坐標系,利用空間向量求解【小問1詳解】證明:因為,所以,所以∥,因為平面,平面,所以∥平面,因為平面,且平面面,所以∥,因為平面,平面,所以∥平面,【小問2詳解】設的中點為,因為△PDC是等邊三角形,所以,因為平面PDC⊥平面ABCD,且平面面,所以平面,因為平面,所以,所以以為原點,所在的直線分別為軸建立空間直角坐標系,如圖所示,則,所以,假設存在這樣的點,由已知得,則,所以,因為平面,所以平面的一個法向量為,設平面的一個法向量為,則,令,則,則所以,整理得,解得(舍去),或,所以20、(1)且(2)【解析】(1)由條件可得,解出即可;(2)由條件可得,解出即可.【小問1詳解】若表示焦點在軸上橢圓,則,解得且【小問2詳解】若表示焦點在軸上且焦距為的雙曲線,則,解得21、(1)證明見解析(2)【解析】(1)推導出平面,,,由此能證明平面(2)推導出,,以為原點,為軸,為軸,為軸,建立空間直角坐標系,利用向量法能求出二面角的余弦值【小問1詳解】證明:為圓錐的高,平面,又平面,,為劣弧的中點,,,平面,平面【小問2詳解】解:解:為劣弧的三等分點(靠近點,為底面圓的直徑,為圓上一點,并且,,以為原點,為軸,為軸,為軸,建立空間直角坐標系,,0,,,0,,,,,,0,,,3,,0,,,,,,,,,3,設平面的法向量,,,則,取,得,,,設平面的法向量,,,則,取,得,1,,設二面角的平面角為,則,二面角的余弦值為22、(1)(2)證明見解析,(3,0)(3)【解析】(1)求出橢圓的焦點坐標,從而可知拋物線的焦點坐標,進而可得的值;(2)首先設出直線的方程,聯(lián)立直線與拋物線的方程,得到,坐標,令,可得直線過點,再證明當,,,三點共線即可;(3)設出的直線
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 代理合作協(xié)議書格式及樣板
- 互聯(lián)網(wǎng)行業(yè)勞動合同數(shù)據(jù)保護案例
- AI在物業(yè)管理中的優(yōu)勢與挑戰(zhàn)
- 企業(yè)信息化管理策略
- 產(chǎn)學研合作文化傳承協(xié)議
- 個人自建房屋環(huán)保合同
- 《綠色建筑物業(yè)管理風險與機遇》
- 企業(yè)貸款合同模板釀酒行業(yè)
- 企業(yè)購漁業(yè)設備貸款協(xié)議書
- 企業(yè)總部寫字樓的物業(yè)管理要點
- 2024年水利工程行業(yè)技能考試-水利系統(tǒng)職稱考試水利專業(yè)技術人員職稱筆試歷年真題薈萃含答案
- 多發(fā)性硬化診斷與治療指南(2023版)解讀
- 改造美食街建筑改造方案
- 中央銀行的支付清算服務
- 財務管理中的財務財務財務人際關系
- 漢語言文學生涯發(fā)展展示
- 旅游景區(qū)管理中的危險源識別與風險評價實施手冊
- 高速鐵路客運服務職業(yè)生涯規(guī)劃
- 【課件】讀后續(xù)寫動作鏈與動作面課件-2024屆高三英語作文寫作復習
- 《快消拜訪八步驟》課件
- 寒潮災害知識講座
評論
0/150
提交評論