福建省德化一中、永安一中、漳平一中2023年高二數(shù)學(xué)第一學(xué)期期末預(yù)測試題含解析_第1頁
福建省德化一中、永安一中、漳平一中2023年高二數(shù)學(xué)第一學(xué)期期末預(yù)測試題含解析_第2頁
福建省德化一中、永安一中、漳平一中2023年高二數(shù)學(xué)第一學(xué)期期末預(yù)測試題含解析_第3頁
福建省德化一中、永安一中、漳平一中2023年高二數(shù)學(xué)第一學(xué)期期末預(yù)測試題含解析_第4頁
福建省德化一中、永安一中、漳平一中2023年高二數(shù)學(xué)第一學(xué)期期末預(yù)測試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

福建省德化一中、永安一中、漳平一中2023年高二數(shù)學(xué)第一學(xué)期期末預(yù)測試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知數(shù)列滿足,,則的最小值為()A. B.C. D.2.焦點為的拋物線標(biāo)準(zhǔn)方程是()A. B.C. D.3.已知數(shù)列中,,則()A. B.C. D.4.若拋物線的焦點為,則其標(biāo)準(zhǔn)方程為()A. B.C. D.5.已知等差數(shù)列滿足,,數(shù)列滿足,記數(shù)列的前n項和為,若對于任意的,,不等式恒成立,則實數(shù)t的取值范圍為()A. B.C. D.6.已知拋物線的焦點為,為拋物線上一點,為坐標(biāo)原點,且,則()A.4 B.2C. D.7.曲線的一個焦點F到兩條漸近線的垂線段分別為FA,F(xiàn)B,O為坐標(biāo)原點,若四邊形OAFB是菱形,則雙曲線C的離心率等于()A. B.C.2 D.8.若直線與平行,則實數(shù)m等于()A.1 B.C.4 D.09.已知是拋物線的焦點,是拋物線的準(zhǔn)線,點,連接交拋物線于點,,則的面積為()A.4 B.9C. D.10.若正方體ABCD-A1B1C1D1的棱長為1,則直線A1C1到平面ACD1的距離為()A.1 B.C. D.11.下列函數(shù)求導(dǎo)錯誤的是()A.B.C.D.12.在等差數(shù)列中,已知,則數(shù)列的前9項和為()A. B.13C.45 D.117二、填空題:本題共4小題,每小題5分,共20分。13.如圖所示的是一個正方體的平面展開圖,,則在原來的正方體中,直線與平面所成角的正弦值為___________.14.圓錐曲線的焦點在軸上,離心率為,則實數(shù)的值是__________.15.已知數(shù)列的前4項依次為,,,,則的一個通項公式為________16.已知雙曲線的右焦點為,過點作軸的垂線,在第一象限與雙曲線及其漸近線分別交于,兩點.若,則雙曲線的離心率為___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知等差數(shù)列的前項和為,,且.(1)求數(shù)列的通項公式;(2)設(shè)數(shù)列的前項和為,證明:.18.(12分)已知:方程表示焦點在軸上的橢圓,:方程表示焦點在軸上的雙曲線,其中.(1)若“”為真命題,求的取值范圍:(2)若“”為假命題,“”為真命題,求的取值范圍.19.(12分)“中山橋”是位于蘭州市中心,橫跨黃河之上的一座百年老橋,如圖①,橋上有五個拱形橋架緊密相連,每個橋架的內(nèi)部有一個水平橫梁和八個與橫梁垂直的立柱,氣勢宏偉,素有“天下黃河第一橋”之稱.如圖②,一個拱形橋架可以近似看作是由等腰梯形和其上方的拋物線(部分)組成,建立如圖所示的平面直角坐標(biāo)系,已知,,,,立柱.(1)求立柱及橫梁的長;(2)求拋物線的方程和橋梁的拱高.20.(12分)已知圓與軸相切,圓心在直線上,且到直線的距離為(1)求圓的方程;(2)若圓的圓心在第一象限,過點的直線與相交于、兩點,且,求直線的方程21.(12分)已知橢圓的焦距為4,點在G上.(1)求橢圓G的方程;(2)過橢圓G右焦點的直線l與橢圓G交于M,N兩點,O為坐標(biāo)原點,若,求直線l的方程.22.(10分)已知等差數(shù)列各項均不為零,為其前項和,點在函數(shù)的圖像上.(1)求的通項公式;(2)若數(shù)列滿足,求的前項和;(3)若數(shù)列滿足,求的前項和的最大值、最小值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】采用疊加法求出,由可得,結(jié)合對勾函數(shù)性質(zhì)分析在或6取到最小值,代值運算即可求解.【詳解】因為,所以,,,,式相加可得,所以,,當(dāng)且僅當(dāng)取到,但,,所以時,當(dāng)時,,,所以的最小值為.故選:C2、D【解析】設(shè)拋物線的方程為,根據(jù)題意,得到,即可求解.【詳解】由題意,設(shè)拋物線的方程為,因為拋物線的焦點為,可得,解得,所以拋物線的方程為.故選:D.3、D【解析】由數(shù)列的遞推公式依次去求,直到求出即可.【詳解】由,可得,,,故選:D.4、D【解析】由題意設(shè)出拋物線的標(biāo)準(zhǔn)方程,再利用焦點為建立,解方程即可.【詳解】由題意,設(shè)拋物線標(biāo)準(zhǔn)方程為,所以,解得,所以拋物線標(biāo)準(zhǔn)方程為.故選:D5、B【解析】由等差數(shù)列基本量法求出通項公式,用裂項相消法求得,求出的最大值,然后利用關(guān)于的不等式是一次不等式列出滿足的不等關(guān)系求得其范圍【詳解】設(shè)等差數(shù)列公差為,則由已知得,解得,∴,,∴,易知數(shù)列是遞增數(shù)列,且,∴若對于任意的,,不等式恒成立,即,又,∴,解得或故選:B【點睛】本題考查求等差數(shù)列的通項公式,考查裂項相消法求數(shù)列的和,考查不等式恒成立問題,解題關(guān)鍵是掌握不等式恒成立問題的轉(zhuǎn)化與化歸思想,不等式恒成立首先轉(zhuǎn)化為求數(shù)列的單調(diào)性與最值,其次轉(zhuǎn)化為一次不等式恒成立6、B【解析】依題意可得,設(shè),根據(jù)可得,,根據(jù)為拋物線上一點,可得.【詳解】依題意可得,設(shè),由得,所以,,所以,,因為為拋物線上一點,所以,解得.故選:B.【點睛】本題考查了平面向量加法的坐標(biāo)運算,考查了求拋物線方程,屬于基礎(chǔ)題.7、A【解析】依題意可得為正方形,即可得到,從而得到雙曲線的漸近線為,即可求出雙曲線的離心率;【詳解】解:依題意,,且四邊形為菱形,所以為正方形,所以,即雙曲線的漸近線為,即,所以;故選:A8、B【解析】兩直線平行的充要條件【詳解】由于,則,.故選:B9、D【解析】根據(jù)題意求得拋物線的方程為和焦點為,由,得到為的中點,得到,代入拋物線方程,求得,進而求得的面積.【詳解】由直線是拋物線的準(zhǔn)線,可得,即,所以拋物線的方程為,其焦點為,因為,可得可得三點共線,且為的中點,又因為,,所以,將點代入拋物線,可得,所以的面積為.故選:D.10、B【解析】先證明點A1到平面ACD1的距離即為直線A1C1到平面ACD1的距離,再建立空間直角坐標(biāo)系,利用向量法求解.【詳解】因為平面平面,所以A1C1//平面ACD1,則點A1到平面ACD1的距離即為直線A1C1到平面ACD1的距離.建立如圖所示的空間直角坐標(biāo)系,易知=(0,0,1),由題得平面,所以平面,所以,同理,因為平面,所以平面,所以是平面一個法向量,所以平面ACD1的一個法向量為=(1,1,1),故所求的距離為.故選:B【點睛】方法點睛:求點到平面的距離常用的方法有:(1)幾何法(找作證指求);(2)向量法;(3)等體積法.要根據(jù)已知條件靈活選擇方法求解.11、C【解析】每一個選項根據(jù)求導(dǎo)公式及法則來運算即可判斷.【詳解】對于A,,正確;對于B,,正確;對于C,,不正確;對于D,,正確.故選:C12、C【解析】根據(jù)給定的條件利用等差數(shù)列的性質(zhì)計算作答【詳解】在等差數(shù)列中,因,所以.故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】將展開圖還原成正方體,通過建系利用空間向量的知識求解.【詳解】將展開圖還原成正方體,以A為原點,建立如圖所示的空間直角坐標(biāo)系,,,,,.則.設(shè)平面的法向量為,由令,則,所以直線與平面所成角的正弦值為.故答案為:14、【解析】根據(jù)圓錐曲線焦點在軸上且離心率小于1,確定a,b求解即可.【詳解】因為圓錐曲線的焦點在軸上,離心率為,所以曲線為橢圓,且,所以,解得,故答案為:15、(答案不唯一)【解析】觀察數(shù)列前幾項,找出規(guī)律即可寫出通項公式.【詳解】根據(jù)數(shù)列前幾項,先不考慮正負(fù),可知,再由奇數(shù)項為負(fù),偶數(shù)項為正,可得到一個通項公式,故答案為:(不唯一)16、【解析】按題意求得,兩點坐標(biāo),以代數(shù)式表達出條件,即可得到關(guān)于的關(guān)系式,進而解得雙曲線的離心率.【詳解】雙曲線的右焦點為,其漸近線為,垂線方程為,則,,,由,得,即即,則,離心率故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)證明見解析.【解析】(1)根據(jù)等差數(shù)列的性質(zhì)及題干條件,可求得,代入公式,即可求得數(shù)列的通項公式;(2)由(1)可得,利用裂項相消求和法,即可求得,即可得證.【詳解】解:(1)設(shè)數(shù)列的公差為,在中,令,得,即,故①.由得,所以②.由①②解得,.所以數(shù)列的通項公式為:.(2)由(1)可得,所以,故,所以.因為,所以.【點睛】數(shù)列求和的常見方法:(1)倒序相加法:如果一個數(shù)列的前n項中首末兩端等距離的兩項的和相等或等于同一個常數(shù),那么求這個數(shù)列的前n項和可以用倒序相加法;(2)錯位相減法:如果一個數(shù)列的各項是由一個等差數(shù)列和一個等比數(shù)列的對應(yīng)項之積構(gòu)成的,那么這個數(shù)列的前n項和可以用錯位相減法來求;(3)裂項相消法:把數(shù)列的通項拆成兩項之差,在求和時,中間的一些項可相互抵消,從而求得其和;(4)分組轉(zhuǎn)化法:一個數(shù)列的通項公式是由若干個等差數(shù)列或等比數(shù)列或可求和的數(shù)列組成,則求和時可用分組轉(zhuǎn)換法分別求和再相加減;(5)并項求和法:一個數(shù)列的前n項和可以兩兩結(jié)合求解,則稱之為并項求和,形如類型,可采用兩項合并求解.18、(1)或(2)【解析】(1)先假設(shè)命題為真命題,求出的取值范圍,為真命題,取補集即可(2)假設(shè)命題為真命題,求出的取值范圍,根據(jù)題意,則命題假設(shè)和命題一真一假,分類討論求的取值范圍【小問1詳解】解:若為真命題,則,解得,若“”為真命題,則為假命題,或;【小問2詳解】若為真命題,則解得,若“”為假命題,則“”為真命題,則與一真一假,①若真假,則解得,②若真假,則解得,綜上所述,,即的取值范圍為.19、(1),(2),【解析】(1)根據(jù)梯形的幾何性質(zhì),即可求解;(2)表示出M,N的坐標(biāo),代入拋物線方程中,結(jié)合條件解得p值,繼而求得拱高.【小問1詳解】由題意,知,因為ABFM是等腰梯形,由對稱性知:,所以,【小問2詳解】由(1)知,所以點M的橫坐標(biāo)為-18,則N的橫坐標(biāo)為-(18-5)=-13.設(shè)點M,N的縱坐標(biāo)分別為y1,y2,由圖形,知設(shè)拋物線的方程為,,兩式相減,得2p(y2-y1)=182-132=155,解得:2p=100故拋物線的方程為x2=-100y.因此,當(dāng)x=-18時,所以橋梁的拱高OH=3.24+4=7.24m.20、(1)或(2)或【解析】(1)設(shè)圓心的坐標(biāo)為,則該圓的半徑長為,利用點到直線的距離公式可求得的值,即可得出圓的標(biāo)準(zhǔn)方程;(2)利用勾股定理可求得圓心到的距離,分析可知直線的斜率存在,設(shè)直線的方程為,利用點到直線的距離公式可求得關(guān)于的方程,解出的值,即可得出直線的方程.【小問1詳解】解:設(shè)圓心的坐標(biāo)為,則該圓的半徑長為,因為圓心到直線的距離為,解得,所以圓心的坐標(biāo)為或,半徑為,因此,圓的標(biāo)準(zhǔn)方程為或.【小問2詳解】解:若圓的圓心在第一象限,則圓的標(biāo)準(zhǔn)方程為.因為,所以圓心到直線的距離.若直線的斜率不存在,則直線的方程為,此時圓心到直線的距離為,不合乎題意;所以,直線的斜率存在,可設(shè)直線的方程為,即,由題意可得,解得,所以,直線的方程為或,即或.21、(1);(2).【解析】(1)根據(jù)已知求出即得橢圓的方程;(2)設(shè)l的方程為,,,聯(lián)立直線和橢圓的方程得到韋達定理,根據(jù)得到,即得直線l的方程.【小問1詳解】解:橢圓的焦距是4,所以焦點坐標(biāo)是,.因為點在G上,所以,所以,.所以橢圓G的方程是.【小問2詳解】解:顯然直線l不垂直于x軸,可設(shè)l的方程為,,,將直線l的方程代入橢圓G的方程,得,則,.因為,所以,則,即,由,得,.所以,解得,即,所以直線

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論