2024屆石家莊市第四十中學(xué)高二上數(shù)學(xué)期末質(zhì)量檢測模擬試題含解析_第1頁
2024屆石家莊市第四十中學(xué)高二上數(shù)學(xué)期末質(zhì)量檢測模擬試題含解析_第2頁
2024屆石家莊市第四十中學(xué)高二上數(shù)學(xué)期末質(zhì)量檢測模擬試題含解析_第3頁
2024屆石家莊市第四十中學(xué)高二上數(shù)學(xué)期末質(zhì)量檢測模擬試題含解析_第4頁
2024屆石家莊市第四十中學(xué)高二上數(shù)學(xué)期末質(zhì)量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2024屆石家莊市第四十中學(xué)高二上數(shù)學(xué)期末質(zhì)量檢測模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若則()A.?2 B.?1C.1 D.22.已知數(shù)列滿足,,記數(shù)列的前n項和為,若對于任意,不等式恒成立,則實數(shù)k的取值范圍為()A. B.C. D.3.已知函數(shù)滿足,則曲線在點處的切線方程為()A. B.C. D.4.已知實數(shù)成等比數(shù)列,則圓錐曲線的離心率為()A. B.2C.或2 D.或5.在四棱錐中,四邊形為菱形,平面,是中點,下列敘述正確的是()A.平面 B.平面C.平面平面 D.平面平面6.已知等比數(shù)列的前n項和為,若,,則()A.250 B.210C.160 D.907.已知為拋物線上一點,點P到拋物線C的焦點的距離與它到y(tǒng)軸的距離之比為,則()A.1 B.C.2 D.38.若函數(shù)有兩個不同的極值點,則實數(shù)的取值范圍是()A. B.C. D.9.正三棱柱各棱長均為為棱的中點,則點到平面的距離為()A. B.C. D.110.拋物線上點的橫坐標(biāo)為4,則到拋物線焦點的距離等于()A.12 B.10C.8 D.611.已知橢圓的左,右焦點分別為,,直線與C交于點M,N,若四邊形的面積為且,則C的離心率為()A. B.C. D.12.圓關(guān)于直線對稱,則的最小值是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設(shè),則動點P的軌跡方程為________14.已知函數(shù)(1)求函數(shù)的單調(diào)區(qū)間;(2)設(shè)上存在極大值M,證明:.15.直線與橢圓交于,兩點,線段的中點為,設(shè)直線的斜率為,直線(其中為坐標(biāo)原點)的斜率為,則______.16.在中,,,的外接圓半徑為,則邊c的長為_____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)設(shè)曲線在點(1,0)處的切線方程為.(1)求a,b的值;(2)求證:;(3)當(dāng),求a的取值范圍.18.(12分)已知函數(shù)(1)證明;(2)設(shè),證明:若一定有零點,并判斷零點的個數(shù)19.(12分)為了謳歌中華民族實現(xiàn)偉大復(fù)興的奮斗歷程,增進(jìn)學(xué)生對中國共產(chǎn)黨的熱愛,某學(xué)校舉辦了一場黨史競賽活動,共有名學(xué)生參加了此次競賽活動.為了解本次競賽活動的成績,從中抽取了名學(xué)生的得分(得分均為整數(shù),滿分為分)進(jìn)行統(tǒng)計,所有學(xué)生的得分都不低于分,將這名學(xué)生的得分進(jìn)行分組,第一組,第二組,第三組,第四組(單位:分),得到如下的頻率分布直方圖(1)求圖中的值,估計此次競賽活動學(xué)生得分的中位數(shù);(2)根據(jù)頻率分布直方圖,估計此次競賽活動得分的平均值.若對得分不低于平均值的同學(xué)進(jìn)行獎勵,請估計在參賽的名學(xué)生中有多少名學(xué)生獲獎20.(12分)一杯100℃的開水放在室溫25℃的房間里,1分鐘后水溫降到85℃,假設(shè)每分鐘水溫變化量和水溫與室溫之差成正比(1)分別求2分鐘,3分鐘后的水溫;(2)記n分鐘后的水溫為,證明:是等比數(shù)列,并求出的通項公式;(3)當(dāng)水溫在40℃到55℃之間時(包括40℃和55℃),為最適合飲用的溫度,則在水燒開后哪個時間段飲用最佳.(參考數(shù)據(jù):)21.(12分)如圖,四棱錐的底面為正方形,底面,設(shè)平面與平面的交線為.(1)證明:;(2)已知,為直線上的點,求與平面所成角的正弦值的最大值.22.(10分)設(shè)F為橢圓的右焦點,過點的直線與橢圓C交于兩點.(1)若點B為橢圓C的上頂點,求直線的方程;(2)設(shè)直線的斜率分別為,,求證:為定值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】分子分母同除以,化弦為切,代入即得結(jié)果.【詳解】由題意,分子分母同除以,可得.故選:B.2、C【解析】由已知得,根據(jù)等比數(shù)列的定義得數(shù)列是首項為,公比為的等比數(shù)列,由此求得,然后利用裂項求和法求得,進(jìn)而求得的取值范圍.【詳解】解:依題意,當(dāng)時,,則,所以數(shù)列是首項為,公比為的等比數(shù)列,,即,所以,所以,所以的取值范圍是.故選:C.3、A【解析】求出函數(shù)的導(dǎo)數(shù),利用導(dǎo)數(shù)的定義求解,然后求解切線的斜率即可【詳解】解:函數(shù),可得,,可得,即,所以,可得,解得,所以,所以曲線在點處的切線方程為故選:A4、C【解析】根據(jù)成等比數(shù)列求得,再根據(jù)離心率計算公式即可求得結(jié)果.【詳解】因為實數(shù)成等比數(shù)列,故可得,解得或;當(dāng)時,表示焦點在軸上的橢圓,此時;當(dāng)時,表示焦點在軸上的雙曲線,此時.故選:C.5、D【解析】利用反證法可判斷A選項;利用面面垂直的性質(zhì)可判斷BC選項;利用面面垂直的判定可判斷D選項.【詳解】對于A選項,因為四邊形為菱形,則,平面,平面,平面,若平面,因為,則平面平面,事實上,平面與平面相交,假設(shè)不成立,A錯;對于B選項,過點在平面內(nèi)作,垂足為點,平面,平面,則,,,平面,而過作平面的垂線,有且只有一條,故與平面不垂直,B錯;對于C選項,過點在平面內(nèi)作,垂足為點,因為平面,平面,則,,,則平面,若平面平面,過點在平面內(nèi)作,垂足為點,因為平面平面,平面平面,平面,平面,而過點作平面的垂線,有且只有一條,即、重合,所以,平面平面,所以,,但四邊形為菱形,、不一定垂直,C錯;對于D選項,因為四邊形為菱形,則,平面,平面,,,平面,因為平面,因此,平面平面平面,D對.故選:D.6、B【解析】設(shè)為等比數(shù)列,由此利用等比數(shù)列的前項和為能求出結(jié)果【詳解】設(shè),等比數(shù)列的前項和為為等比數(shù)列,為等比數(shù)列,解得故選:B7、B【解析】先求出點的坐標(biāo),然后根據(jù)拋物線的定義和已知條件列方程求解即可【詳解】因為為拋物線上一點,所以,得,所以,拋物線的焦點為,因為點P到拋物線C的焦點的距離與它到y(tǒng)軸的距離之比為,所以,化簡得,因為,所以,故選:B8、D【解析】計算,然后等價于在(0,+∞)由2個不同的實數(shù)根,然后計算即可.【詳解】的定義域是(0,+∞),,若函數(shù)有兩個不同的極值點,則在(0,+∞)由2個不同的實數(shù)根,故,解得:,故選:D.【點睛】本題考查根據(jù)函數(shù)極值點個數(shù)求參,考查計算能力以及思維轉(zhuǎn)變能力,屬基礎(chǔ)題.9、C【解析】建立空間直角坐標(biāo)系,利用點面距公式求得正確答案.【詳解】設(shè)分別是的中點,根據(jù)正三棱柱的性質(zhì)可知兩兩垂直,以為原點建立如圖所示空間直角坐標(biāo)系,,,.設(shè)平面的法向量為,則,故可設(shè),所以點到平面的距離為.故選:C10、C【解析】根據(jù)焦半徑公式即可求出【詳解】因為,所以,所以故選:C11、A【解析】根據(jù)題意可知四邊形為平行四邊形,設(shè),進(jìn)而得,根據(jù)四邊形面積求出點M的坐標(biāo),再代入橢圓方程得出關(guān)于e的方程,解方程即可.【詳解】如圖,不妨設(shè)點在第一象限,由橢圓的對稱性得四邊形為平行四邊形,設(shè)點,由,得,因為四邊形的面積為,所以,得,由,得,解得,所以,即點,代入橢圓方程,得,整理得,由,得,解得,由,得.故選:A12、C【解析】先求出圓的圓心坐標(biāo),根據(jù)條件可得直線過圓心,從而可得,然后由,展開利用均值不等式可得答案.【詳解】由圓可得標(biāo)準(zhǔn)方程為,因為圓關(guān)于直線對稱,該直線經(jīng)過圓心,即,,,當(dāng)且僅當(dāng),即時取等號,故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)雙曲線的定義可得答案.【詳解】因為,所以動點P的軌跡是焦點為A,B,實軸長為4的雙曲線的上支.因為,所以,所以動點P的軌跡方程為故答案為:.14、(1)在單調(diào)遞增,單調(diào)遞減;(2)詳見解析.【解析】(1)求得,利用和即可求得函數(shù)的單調(diào)性區(qū)間;(2)求得函數(shù)的解析式,求,對的情況進(jìn)行分類討論得到函數(shù)有極大值的情形,再結(jié)合極大值點的定義進(jìn)行替換、即可求解.【詳解】(1)由題意,函數(shù),則,當(dāng)時,令,所以函數(shù)單調(diào)遞增;當(dāng)時,令,即,解得或,令,即,解得,所以函數(shù)在區(qū)間上單調(diào)遞增,在區(qū)間中單調(diào)遞減,當(dāng)時,令,即,解得或,令,即,解得,所以函數(shù)在單調(diào)遞增,在單調(diào)遞減.(2)由函數(shù),則,令,可得令,解得,當(dāng)時.,函數(shù)在單調(diào)遞增,此時,所以,函數(shù)在上單調(diào)遞增,此時不存在極大值,當(dāng)時,令解得,令,解得,所以上單調(diào)遞減,在上單調(diào)遞增,因為在上存在極大值,所以,解得,因為,易證明,存在時,,存在使得,當(dāng)在區(qū)間上單調(diào)遞增,在區(qū)間單調(diào)遞減,所以當(dāng)時,函數(shù)取得極大值,即,,由,所以【點睛】本題主要考查導(dǎo)數(shù)在函數(shù)中的綜合應(yīng)用,以及不等式的證明,著重考查了轉(zhuǎn)化與化歸思想、分類討論、及邏輯推理能力與計算能力,對于此類問題,通常要構(gòu)造新函數(shù),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,求出最值,進(jìn)而得出相應(yīng)的含參不等式,從而求出參數(shù)的取值范圍;也可分離變量,構(gòu)造新函數(shù),直接把問題轉(zhuǎn)化為函數(shù)的最值問題15、##-0.0625【解析】使用點差法即可求解﹒【詳解】設(shè),,則①-②得:,即,即.故答案為:.16、【解析】由面積公式求得,結(jié)合外接圓半徑,利用正弦定理得到邊c的長.【詳解】,從而,由正弦定理得:,解得:故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)證明見解析(3)【解析】(1)求導(dǎo),根據(jù)導(dǎo)數(shù)的幾何意義,令x=1處的切線的斜率等1,結(jié)合,即可求得a和b的值;(2)利用(1)的結(jié)論,構(gòu)造函數(shù),求求導(dǎo)數(shù),判斷單調(diào)性,求出最小值即可證明;(3)根據(jù)條件構(gòu)造函數(shù),求出其導(dǎo)數(shù),分類討論導(dǎo)數(shù)的值的情況,根據(jù)單調(diào)性,判斷函數(shù)的最小值情況,即可求得答案.【小問1詳解】由題意知:,因為曲線在點(1,0)處的切線方程為,故,即;【小問2詳解】證明:由(1)知:,令,則,當(dāng)時,,單調(diào)遞減,當(dāng)時,,單調(diào)遞增,所以當(dāng)時,取得極小值,也即最小值,最小值為,故,即成立;【小問3詳解】當(dāng),即,(),設(shè),(),則,當(dāng)時,由得,此時,此時在時單調(diào)遞增,,適合題意;當(dāng)時,,此時在時單調(diào)遞增,,適合題意;當(dāng)時,,此時,此時在時單調(diào)遞增,,適合題意;當(dāng)時,,此時在內(nèi),,在內(nèi),,故,顯然時,,不滿足當(dāng)恒成立,綜上述:.18、(1)證明見解析;(2)證明見解析,1個零點.【解析】(1)求導(dǎo)同分化簡,構(gòu)造新函數(shù)判斷導(dǎo)數(shù)正負(fù)即可;(2)令g(x)=0,化簡方程,將問題轉(zhuǎn)化為討論方程解的個數(shù)問題.【小問1詳解】,設(shè),則,時,遞減,時,遞增,而,所以時,,所以;小問2詳解】有零點,則有解,即有解,又,則只要,因為,方程可以化為,現(xiàn)在證明有解,令,則,可知在遞減,在遞增,所以,因為,所以,在內(nèi)恒有,而在遞增,當(dāng)x=時,h()=,故根據(jù)零點存在性定理知在存在唯一零點.所以有且只有一個零點,所以有零點,有一個零點【點睛】本題關(guān)鍵是是將方程零點問題轉(zhuǎn)化為方程解的問題,通過討論單調(diào)性和最值(極值)的正負(fù)即可判斷零點的有無和個數(shù).19、(1),中位數(shù)為;(2)得分的平均值為,估計有260名學(xué)生獲獎.【解析】(1)根據(jù)給定的頻率分布直方圖,利用各小矩形面積和為1計算得值;再由在中位數(shù)兩側(cè)所對小矩形面積相等即可計算得解.(2)由頻率分布直方圖求平均數(shù)的方法求出得分平均值即可估計;再求出不低于平均分的頻率即可估計獲獎人數(shù).【小問1詳解】由頻率分布直方圖知:,解得,設(shè)此次競賽活動學(xué)生得分的中位數(shù)為,因數(shù)據(jù)落在內(nèi)的頻率為0.4,落在內(nèi)的頻率為0.8,從而可得,由得:,所以,估計此次競賽活動學(xué)生得分的中位數(shù)為.【小問2詳解】由頻率分布直方圖及(1)知:數(shù)據(jù)落在,,,的頻率分別為,,此次競賽活動學(xué)生得分不低于82的頻率為,則,所以估計此次競賽活動得分的平均值為,在參賽的名學(xué)生中估計有260名學(xué)生獲獎.20、(1)2分鐘的水溫為℃,3分鐘后的水溫℃;(2)證明見解析,,;(3)在水燒開后4到7分鐘飲用最佳.【解析】(1)根據(jù)給定條件設(shè)第n分鐘后的水溫為,探求出與的關(guān)系即可計算作答.(2)利用(1)的信息,列式變形、推導(dǎo)即可得證,進(jìn)而求出的通項公式.(3)由(2)的結(jié)論列不等式,借助對數(shù)函數(shù)的性質(zhì)求解即得.【小問1詳解】設(shè)第n分鐘后的水溫為,正比例系數(shù)為k,記,依題意,,當(dāng)時,,則有,解得,因此,,即有,,所以2分鐘的水溫為℃,3分鐘后的水溫℃.小問2詳解】由(1)知,,時,,,則有,即,而,于是得是以為首項,為公比的等比數(shù)列,則有,即,所以是等比數(shù)列,的通項公式是,.【小問3詳解】由(2)及已知得:,即,整理得,兩邊取常用對數(shù)得:,而,解得,即,所以在水燒開后4到7分鐘飲用最佳.【點睛】思路點睛:涉及實際意義給出的數(shù)列問題,正確理解實際意義,列出關(guān)系式,再借助數(shù)列思想探求相鄰兩項間關(guān)系即可推理作答.21、(1)證明見解析(2)【解析】(1)由可證得平面,根據(jù)線面平行的性質(zhì)可證得結(jié)論;(2)以為坐標(biāo)原點建立空間直角坐標(biāo)系,設(shè),利用線面角的向量求法可表示出,分別在、和三種情況下,結(jié)合基本不等式求得所求最大值.【小問1詳解】四邊形為正方形,,又平面,平面,平面,又平面,平面平面,.【小問2詳解】以為坐標(biāo)原點,為軸可建立如圖所示空間直角坐標(biāo)系,則,,,,由(1)知:,則可設(shè),,,,設(shè)平面的法向量,則,令,則,,,設(shè)直線與平面所成角為,;當(dāng)時,;當(dāng)時,(當(dāng)且僅當(dāng),即時取等號);當(dāng)時,;綜上所述:直線與平面所成角正弦值的最大值為.22、(1);(2)證明見解析.【解析】(1)求出的直線方程,結(jié)合橢圓方程可求的坐標(biāo),從而可求的直線方程;(2)設(shè),直線(或),則可用兩點的坐標(biāo)表示或,聯(lián)立直線的方程和橢圓的方程,消元后利用韋達(dá)定理可化簡前者從而得到要證明的結(jié)論【詳解】(1)若B為橢圓的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論