版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
A佳經(jīng)典聯(lián)考2023-2024學年數(shù)學高二上期末學業(yè)水平測試試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.某班級從5名同學中挑出2名同學進行大掃除,若小王和小張在這5名同學之中,則小王和小張都沒有被挑出的概率為()A. B.C. D.2.公比為的等比數(shù)列,其前項和為,前項積為,滿足,.則下列結(jié)論正確的是()A.的最大值為B.C.最大值為D.3.已知數(shù)列滿足,,記數(shù)列的前n項和為,若對于任意,不等式恒成立,則實數(shù)k的取值范圍為()A. B.C. D.4.已知,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件5.如圖所示,在三棱錐中,E,F(xiàn)分別是AB,BC的中點,則等于()A. B.C. D.6.已知在四棱錐中,平面,底面是邊長為4的正方形,,E為棱的中點,則直線與平面所成角的正弦值為()A. B.C. D.7.已知數(shù)列為等差數(shù)列,且成等比數(shù)列,則的前6項的和為A.15 B.C.6 D.38.已知雙曲線的離心率為5,則其標準方程為()A. B.C. D.9.已知,,點為圓上任意一點,設,則的最大值為()A. B.C. D.10.已知向量與平行,則()A. B.C. D.11.下列命題是真命題的個數(shù)為()①不等式的解集為②不等式的解集為R③設,則④命題“若,則或”為真命題A1 B.2C.3 D.412.拋物線的焦點坐標為A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知為數(shù)列{}前n項和,若,且),則=___14.已知橢圓,A,B是橢圓C上的兩個不同的點,設,若,則直線AB的方程為______15.函數(shù)的圖象在點處的切線方程為___________.16.如圖,將一個正方體沿相鄰三個面的對角線截出一個棱錐,若該棱錐的體積為,則該正方體的邊長為___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓,焦點,A,B是上關(guān)于原點對稱的兩點,的周長的最小值為(1)求的方程;(2)直線FA與交于點M(異于點A),直線FB與交于點N(異于點B),證明:直線MN過定點18.(12分)已知是公差不為0的等差數(shù)列,其前項和為,,且,,成等比數(shù)列.(1)求和;(2)若,數(shù)列的前項和為,且對任意的恒成立,求實數(shù)的取值范圍.19.(12分)設函數(shù).(1)求函數(shù)的單調(diào)區(qū)間;(2)求函數(shù)的極值.20.(12分)寫出下列命題的逆命題、否命題以及逆否命題:(1)若,則;(2)已知為實數(shù),若,則21.(12分)已知等差數(shù)列滿足:成等差數(shù)列,成等比數(shù)列.(1)求的通項公式:(2)在數(shù)列的每相鄰兩項與間插入個,使它們和原數(shù)列的項構(gòu)成一個新數(shù)列,數(shù)列的前項和記為,求及.22.(10分)已知橢圓的離心率是,且過點.直線與橢圓相交于兩點.(Ⅰ)求橢圓的方程;(Ⅱ)求的面積的最大值;(Ⅲ)設直線,分別與軸交于點,.判斷,大小關(guān)系,并加以證明.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】記另3名同學分別為a,b,c,應用列舉法求古典概型的概率即可.【詳解】記另3名同學分別為a,b,c,所以基本事件為,,(a,小王),(a,小張),,(b,小王),(b,小張),(c,小王),(c,小張),(小王,小張),共10種小王和小張都沒有被挑出包括的基本事件為,,,共3種,綜上,小王和小張都沒有挑出的概率為故選:B.2、A【解析】根據(jù)已知條件,判斷出,即可判斷選項D,再根據(jù)等比數(shù)列的性質(zhì),判斷,,由此判斷出選項A,B,C.【詳解】根據(jù)題意,等比數(shù)列滿足條件,,,若,則,則,,則,這與已知條件矛盾,所以不符合題意,故選項D錯誤;因為,,,所以,,,則,,數(shù)列前2021項都大于1,從第2022項開始都小于1,因此是數(shù)列中的最大值,故選項A正確由等比數(shù)列的性質(zhì),,故選項B不正確;而,由以上分析可知其無最大值,故C錯誤;故選:A3、C【解析】由已知得,根據(jù)等比數(shù)列的定義得數(shù)列是首項為,公比為的等比數(shù)列,由此求得,然后利用裂項求和法求得,進而求得的取值范圍.【詳解】解:依題意,當時,,則,所以數(shù)列是首項為,公比為的等比數(shù)列,,即,所以,所以,所以的取值范圍是.故選:C.4、A【解析】由,結(jié)合基本不等式可得,由此可得,由此說明“”是“”的充分條件,再通過舉反例說明“”不是“”的必要條件,由此確定正確選項.【詳解】∵,∴(當且僅當時等號成立),(當且僅當時等號成立),∴(當且僅當時等號成立),若,則,∴,所以“”是“”的充分條件,當時,,此時,∴“”不是“”的必要條件,∴“”是“”的充分不必要條件,故選:A.5、D【解析】根據(jù)向量的線性運算公式化簡可得結(jié)果.【詳解】因為E,F(xiàn)分別是AB,AC的中點,所以,,所以,故選:D6、B【解析】建立空間直角坐標系,以向量法去求直線與平面所成角的正弦值即可.【詳解】平面,底面是邊長為4的正方形,則有,而,故平面,以A為原點,分別以AB、AD、AP所在直線為x軸、y軸、z軸建立空間直角坐標系如圖:則,,,設直線與平面所成角為,又由題可知為平面的一個法向量,則故選:B7、C【解析】利用成等比數(shù)列,得到方程2a1+5d=2,將其整體代入{an}前6項的和公式中即可求出結(jié)果【詳解】∵數(shù)列為等差數(shù)列,且成等比數(shù)列,∴,1,成等差數(shù)列,∴2,∴2=a1+a1+5d,解得2a1+5d=2,∴{an}前6項的和為2a1+5d)=故選C【點睛】本題考查等差數(shù)列前n項和求法,是基礎題,解題時要認真審題,注意等差數(shù)列、等比數(shù)列的性質(zhì)的合理運用8、D【解析】雙曲線離心率公式和a、b、c的關(guān)系即可求得m,從而得到雙曲線的標準方程.【詳解】∵雙曲線,∴,又,∴,∵離心率為,∴,解得,∴雙曲線方程.故選:D.9、C【解析】根據(jù)題意可設,再根據(jù),求出,再利用三角函數(shù)的性質(zhì)即可得出答案.【詳解】解:由點為圓上任意一點,可設,則,由,得,所以,則,則,其中,所以當時,取得最大值為22.故選:C.10、D【解析】根據(jù)兩向量平行可求得、的值,即可得出合適的選項.【詳解】由已知,解得,,則.故選:D.11、B【解析】舉反例判斷A,解一元二次不等式確定B,由導數(shù)的運算法則求導判斷C,利用逆否命題判斷D【詳解】顯然不是的解,A錯;,B正確;,,C錯;命題“若,則或”的逆否命題是:若且,則,是真命題,原命題也是真命題,D正確真命題個數(shù)2.故選:B12、D【解析】拋物線的標準方程為,從而可得其焦點坐標【詳解】拋物線的標準方程為,故其焦點坐標為,故選D.【點睛】本題考查拋物線的性質(zhì),屬基礎題二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】第一步找出數(shù)列周期,第二步利用周期性求和.【詳解】,,,,,,可知數(shù)列{}是周期為4的周期數(shù)列,所以故答案為:2.14、【解析】由已知可得為的中點,再由點差法求所在直線的斜率,即可求得直線的方程【詳解】由,可得為的中點,且在橢圓內(nèi),設,,,,則,,,則,即所在直線的斜率為直線的方程為,即故答案為:15、【解析】求導得到,計算,根據(jù)點斜式可得到切線方程.【詳解】因此,則,故,又點在函數(shù)的圖象上,故切線方程為:,即.故答案為:16、2【解析】根據(jù)體積公式直接計算即可.【詳解】設正方體邊長為,則,解得.故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)證明見解析【解析】(1)設橢圓的左焦點為,根據(jù)橢圓的對稱性可得,則三角形的周長為,再設根據(jù)二次函數(shù)的性質(zhì)得到,即可求出的周長的最小值為,從而得到,再根據(jù),即可求出、,從而求出橢圓方程;(2)設直線MN的方程,,,,聯(lián)立直線與橢圓方程,消元列出韋達定理,再設直線的方程、,直線的方程、,聯(lián)立直線方程,消元列出韋達定理,即可表示,即可得到,整理得,再代入,,即可得到,從而求出,即可得解;【小問1詳解】設橢圓的左焦點為,則由對稱性,,所以的周長為設,則,當A,B是橢圓的上下頂點時,的周長取得最小,所以,即,又橢圓焦點,所以,所以,所以,解得,,所以橢圓的方程為.【小問2詳解】解:當A,B為橢圓左右頂點時,直線MN與x軸重合;當A,B為橢圓上下頂點時,可得直線MN的方程為;設直線MN的方程,,,,由得,,,,設直線的方程,其中,,,由得,,,,設直線的方程,其中,,由得,,,所以,所以,所以,則,即,代入,,得,整理得,又所以,直線MN的方程為,綜上直線MN過定點18、(1),;(2).【解析】(1)求出,即得數(shù)列的和;(2)由題得,再利用分組求和求出,得到,令,判斷函數(shù)的單調(diào)性得解.【詳解】(1)設數(shù)列的公差為,由已知得,,即,整理得,又,,;(2)由題意:,,,令,則,即對任意的恒成立,是單調(diào)遞增數(shù)列,,只需,所以.【點睛】方法點睛:求數(shù)列的最值,常用數(shù)列的單調(diào)性求解,求數(shù)列的單調(diào)性,一般利用定義法作差或作商判斷.19、(1)單調(diào)遞減區(qū)間為和,單調(diào)遞增區(qū)間為(2)極小值,極大值為【解析】(1)先對函數(shù)求導,然后根據(jù)導數(shù)的正負可求出函數(shù)的單調(diào)區(qū)間,(2)根據(jù)(1)中求得單調(diào)區(qū)間可求出函數(shù)的極值【小問1詳解】.當變化時,,的變化情況如下表所示:00減極小值增極大值減的單調(diào)遞減區(qū)間為和,單調(diào)遞增區(qū)間為.【小問2詳解】由(1)可知在處取得極小值,在處取得極大值.的極小值為,極大值為.20、(1)答案見解析(2)答案見解析【解析】(1)(2)根據(jù)逆命題、否命題以及逆否命題的定義作答即可;【小問1詳解】解:逆命題:若,則;否命題:若,則;逆否命題:若,則【小問2詳解】解:逆命題:已知為實數(shù),若,則;否命題:已知為實數(shù),若或,則;逆否命題:已知實數(shù),若,則或21、(1);(2),.【解析】(1)根據(jù)等差數(shù)列和等比數(shù)列的通項公式進行求解即可;(2)根據(jù)等差數(shù)列的通項公式,結(jié)合等比數(shù)列的前項和公式進行求解即可.【小問1詳解】設等差數(shù)列的公差為,因為成等差數(shù)列,所以有,因成等比數(shù)列,所以,所以;【小問2詳解】由題意可知:在和之間插入個,在和之間插入個,,在和之間插入個,此時共插入的個數(shù)為:,在和之間插入個,此時共插入的個數(shù)為:,因此.22、(1)(2)(3)見解析【解
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025至2030年中國超細纖維清潔地拖數(shù)據(jù)監(jiān)測研究報告
- 2025至2030年中國綜合布線配線產(chǎn)品數(shù)據(jù)監(jiān)測研究報告
- 2025至2030年中國牛仔皮標牌數(shù)據(jù)監(jiān)測研究報告
- 2025年中國電動摩托車控制器市場調(diào)查研究報告
- 2025年中國家用換氣扇市場調(diào)查研究報告
- 2025年中國單擺式進出口器市場調(diào)查研究報告
- 2025至2031年中國通訊器行業(yè)投資前景及策略咨詢研究報告
- 綠色創(chuàng)新對出口產(chǎn)品結(jié)構(gòu)優(yōu)化的影響研究
- 二零二五年度初級農(nóng)產(chǎn)品電商平臺風險控制與合作合同4篇
- 二零二五年度拍賣標的物鑒定合同4篇
- 2024年湖南高速鐵路職業(yè)技術(shù)學院高職單招數(shù)學歷年參考題庫含答案解析
- 2024年國家工作人員學法用法考試題庫及參考答案
- 國家公務員考試(面試)試題及解答參考(2024年)
- 《阻燃材料與技術(shù)》課件 第6講 阻燃纖維及織物
- 同等學力英語申碩考試詞匯(第六版大綱)電子版
- 人教版五年級上冊遞等式計算100道及答案
- 墓地個人協(xié)議合同模板
- 2024年部編版初中語文各年級教師用書七年級(上冊)
- 2024年新課標全國Ⅰ卷語文高考真題試卷(含答案)
- 湖南省退休人員節(jié)日慰問政策
- QB/T 5998-2024 寵物尿墊(褲)(正式版)
評論
0/150
提交評論