北京市北方交通大學附屬中學2023-2024學年數(shù)學高二上期末經(jīng)典試題含解析_第1頁
北京市北方交通大學附屬中學2023-2024學年數(shù)學高二上期末經(jīng)典試題含解析_第2頁
北京市北方交通大學附屬中學2023-2024學年數(shù)學高二上期末經(jīng)典試題含解析_第3頁
北京市北方交通大學附屬中學2023-2024學年數(shù)學高二上期末經(jīng)典試題含解析_第4頁
北京市北方交通大學附屬中學2023-2024學年數(shù)學高二上期末經(jīng)典試題含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

北京市北方交通大學附屬中學2023-2024學年數(shù)學高二上期末經(jīng)典試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.將直線繞著原點逆時針旋轉(zhuǎn),得到新直線的斜率是()A. B.C. D.2.函數(shù)是偶函數(shù)且在上單調(diào)遞減,,則的解集為()A. B.C. D.3.已知曲線C的方程為,則下列結論正確的是()A.當時,曲線C為圓B.“”是“曲線C為焦點在x軸上的雙曲線”的充分而不必要條件C.“”是“曲線C為焦點在x軸上的橢圓”的必要而不充分條件D.存在實數(shù)k使得曲線C為雙曲線,其離心率為4.已知數(shù)列的通項公式為,且數(shù)列是遞增數(shù)列,則實數(shù)的取值范圍是()A. B.C. D.5.已知為等差數(shù)列,為公差,若成等比數(shù)列,且,則數(shù)列的前項和為()A. B.C. D.6.設函數(shù)的圖象在點處的切線為,則與坐標軸圍成的三角形面積的最小值為()A. B.C. D.7.已知為虛數(shù)單位,復數(shù)是純虛數(shù),則()A. B.4C.3 D.28.經(jīng)過點的直線的傾斜角為,則A. B.C. D.9.已知遞增等比數(shù)列的前n項和為,,且,則與的關系是()A. B.C. D.10.設,是雙曲線()的左、右焦點,是坐標原點.過作的一條漸近線的垂線,垂足為.若,則的離心率為A. B.C. D.11.設函數(shù)在上可導,則等于()A. B.C. D.以上都不對12.如圖所示,過拋物線的焦點F的直線依次交拋物線及準線于點A,B,C.若,且,則拋物線的方程為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,已知,分別是橢圓的左、右焦點,現(xiàn)以為圓心作一個圓恰好經(jīng)過橢圓的中心并且交橢圓于點,.若過點的直線是圓的切線,則橢圓的離心率為_________14.如圖,拋物線上的點與軸上的點構成等邊三角形,,,其中點在拋物線上,點的坐標為,,猜測數(shù)列的通項公式為________15.已知幾何體如圖所示,其中四邊形ABCD,CDGF,ADGE均為正方形,且邊長為1,點M在DG上,若直線MB與平面BEF所成的角為45°,則___________.16.已知點在拋物線上,那么點到點的距離與點到拋物線焦點距離之和取得最小值時,點的坐標為______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)討論的單調(diào)性;(2)任意,恒成立,求的取值范圍.18.(12分)已知圓的圓心在第一象限內(nèi),圓關于直線對稱,與軸相切,被直線截得的弦長為.(1)求圓的方程;(2)若點,求過點的圓的切線方程.19.(12分)如圖所示,在四棱錐中,BC//平面PAD,,E是PD的中點(1)求證:CE//平面PAB;(2)若M是線段CE上一動點,則線段AD上是否存在點,使MN//平面PAB?說明理由20.(12分)如圖,在直角梯形中,.直角梯形通過直角梯形以直線為軸旋轉(zhuǎn)得到,且使得平面平面.M為線段的中點,P為線段上的動點(1)求證:;(2)當點P滿足時,求證:直線平面;(3)是否存在點P,使直線與平面所成角的正弦值為?若存在,試確定P點的位置;若不存在,請說明理由21.(12分)已知數(shù)列,若_________________(1)求數(shù)列的通項公式;(2)求數(shù)列的前項和從下列三個條件中任選一個補充在上面的橫線上,然后對題目進行求解①;②,,;③,點,在斜率是2的直線上22.(10分)已知函數(shù),從下列兩個條件中選擇一個使得數(shù)列{an}成等比數(shù)列.條件1:數(shù)列{f(an)}是首項為4,公比為2的等比數(shù)列;條件2:數(shù)列{f(an)}是首項為4,公差為2的等差數(shù)列.(1)求數(shù)列{an}的通項公式;(2)求數(shù)列的前n項和.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】由題意知直線的斜率為,設其傾斜角為,將直線繞著原點逆時針旋轉(zhuǎn),得到新直線的斜率為,化簡求值即可得到答案.【詳解】由知斜率為,設其傾斜角為,則,將直線繞著原點逆時針旋轉(zhuǎn),則故新直線的斜率是.故選:B.2、D【解析】分析可知函數(shù)在上為增函數(shù),且有,將所求不等式變形為,可得出關于實數(shù)的不等式,由此可解得實數(shù)的取值范圍.【詳解】因為函數(shù)是偶函數(shù)且在上單調(diào)遞減,則該函數(shù)在上為增函數(shù),且,由可得,所以,,可得或,解得或.因此,不等式的解集為.故選:D.3、C【解析】根據(jù)橢圓、雙曲線的定義及簡單幾何性質(zhì)計算可得;【詳解】解:由題意,曲線C的方程為,對于A中,當時,曲線C的方程為,此時曲線C表示橢圓,所以A錯誤;對于B中,當曲線C的方程為表示焦點在x軸上的雙曲線時,則滿足,解得,所以“”是“曲線C為焦點在x軸上的雙曲線”的必要不充分條件,所以B不正確;對于C中,當曲線C的方程為表示焦點在x軸上的橢圓時,則滿足,解得,所以“”是“曲線C為焦點在x軸上的雙曲線”的必要不充分條件,所以C正確;對于D中,當曲線C的方程為表示雙曲線,且離心率為時,此時雙曲線的實半軸長等于虛半軸長,此時,解得,此時方程表示圓,所以不正確.故選:C.4、C【解析】利用遞增數(shù)列的定義即可.【詳解】由,∴,即是小于2n+1的最小值,∴,故選:C5、C【解析】先利用已知條件得到,解出公差,得到通項公式,再代入數(shù)列,利用裂項相消法求和即可.【詳解】因為成等比數(shù)列,,故,即,故,解得或(舍去),故,即,故的前項和為:.故選:C.【點睛】方法點睛:數(shù)列求和的方法:(1)倒序相加法:如果一個數(shù)列的前項中首末兩端等距離的兩項的和相等或等于同一個常數(shù),那么求這個數(shù)列的前項和即可以用倒序相加法(2)錯位相減法:如果一個數(shù)列的各項是由一個等差數(shù)列和一個等比數(shù)列的對應項之積構成的,那么這個數(shù)列的前項和即可以用錯位相減法來求;(3)裂項相消法:把數(shù)列的通項拆成兩項之差,在求和時,中間的一些像可相互抵消,從而求得其和;(4)分組轉(zhuǎn)化法:一個數(shù)列的通項公式是由若干個等差數(shù)列或等比數(shù)列:或可求和的數(shù)列組成,則求和時可用分組轉(zhuǎn)換法分別求和再相加減;(5)并項求和法:一個數(shù)列的前項和可以兩兩結合求解,則稱之為并項求和,形如類型,可采用兩項合并求解.6、C【解析】利用導數(shù)的幾何意義求得切線為,求x、y軸上截距,進而可得與坐標軸圍成的三角形面積,利用導數(shù)研究在上的最值即可得結果.【詳解】由題設,,則,又,所以切線為,當時,當時,又,所以與坐標軸圍成的三角形面積為,則,當時,當時,所以在上遞減,在上遞增,即.故選:C7、C【解析】化簡復數(shù)得,由其為純虛數(shù)求參數(shù)a,進而求的模即可.【詳解】由純虛數(shù),∴,解得:,則,故選:C8、A【解析】由題意,得,解得;故選A考點:直線的傾斜角與斜率9、D【解析】設等比數(shù)列的公比為,由已知列式求得,再由等比數(shù)列的通項公式與前項和求解.【詳解】設等比數(shù)列的公比為,由,得,所以,又,所以,所以,,所以即故選:D10、B【解析】分析:由雙曲線性質(zhì)得到,然后在和在中利用余弦定理可得詳解:由題可知在中,在中,故選B.點睛:本題主要考查雙曲線的相關知識,考查了雙曲線的離心率和余弦定理的應用,屬于中檔題11、C【解析】根據(jù)目標式,結合導數(shù)的定義即可得結果.【詳解】.故選:C12、A【解析】分別過點作準線的垂線,分別交準線于點,,設,推出;根據(jù),進而推導出,結合拋物線定義求出;最后由相似比推導出,即可求出拋物線的方程.【詳解】如圖分別過點作準線的垂線,分別交準線于點,,設與交于點.設,,,由拋物線定義得:,故在直角三角形中,,,,,,,∥,,,即,,所以拋物線的方程為.故選:A二、填空題:本題共4小題,每小題5分,共20分。13、##【解析】根據(jù)給定條件探求出橢圓長軸長與其焦距的關系即可計算作答.【詳解】設橢圓長軸長為,焦距為,即,依題意,,而直線是圓的切線,即,則有,又點在橢圓上,即,因此,,從而有,所以橢圓的離心率為.故答案為:14、【解析】求出,,,,,,可猜測,利用累加法,即可求解【詳解】的方程為,代入拋物線可得,同理可得,,,,可猜測,證明:記三角形的邊長為,由題意可知,當時,在拋物線上,可得,當時,,兩式相減得:化簡得:,則數(shù)列是等差數(shù)列,,,,,故答案為:15、##【解析】把該幾何體補成一個正方體,如圖,利用正方體的性質(zhì)證明面面垂直得出直線MB與平面BEF所成的角,然后計算可得【詳解】把該幾何體補成一個正方體,如圖,,連接,由平面,平面,得,同理,又正方形中,,,平面,所以平面,而平面,所以平面平面,所以平面內(nèi)的直線在平面上的射影是,即是直線MB與平面BEF所成的角,,,,故答案為:16、【解析】由拋物線定義可得,由此可知當為與拋物線的交點時,取得最小值,進而求得點坐標.【詳解】由題意得:拋物線焦點為,準線為作,垂直于準線,如下圖所示:由拋物線定義知:(當且僅當三點共線時取等號)即的最小值為,此時為與拋物線的交點故答案為【點睛】本題考查拋物線線上的點到焦點的距離與到定點距離之和最小的相關問題的求解,關鍵是能夠熟練應用拋物線定義確定最值取得的位置.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)的遞增區(qū)間為,遞減區(qū)間為(2)【解析】(1)先求出函數(shù)的導數(shù),令、解出對應的解集,結合定義域即可得到函數(shù)的單調(diào)區(qū)間;(2)將不等式轉(zhuǎn)化為,令,利用導數(shù)討論函數(shù)分別在、時的單調(diào)性,進而求出函數(shù)的最值,即可得出答案.【小問1詳解】函數(shù)的定義域為,又當時,,當時,故的遞增區(qū)間為,遞減區(qū)間為.【小問2詳解】,即,令,有,,若,在上恒成立.則在上為減函數(shù),所以有若,由,可得,則在上增,所以在上存在使得,與題意不符合綜上所述,.18、(1)(2)或【解析】(1)結合點到直線的距離公式、弦長公式求得,由此求得圓的方程.(2)根據(jù)過的圓的切線的斜率是否存在進行分類討論,結合點到直線的距離公式求得切線方程.【小問1詳解】由題意,設圓的標準方程為:,圓關于直線對稱,圓與軸相切:…①點到的距離為:,圓被直線截得的弦長為,,結合①有:,,又,,,圓的標準方程為:.【小問2詳解】當直線的斜率不存在時,滿足題意當直線的斜率存在時,設直線的斜率為,則方程為.又圓C的圓心為,半徑,由,解得.所以直線方程為,即即直線的方程為或.19、(1)證明見解析;(2)存在,理由見解析.【解析】(1)為中點,連接,由中位線、線面平行的性質(zhì)可得四邊形為平行四邊形,再根據(jù)線面平行的判定即可證結論;(2)取中點N,連接,,根據(jù)線面、面面平行的性質(zhì)定理和判斷定理即可判斷存在性【小問1詳解】如下圖,若為中點,連接,由E是PD的中點,所以且,又BC//平面PAD,面,且面面,所以,且,所以四邊形為平行四邊形,故,而面,面,則面.小問2詳解】取中點N,連接,,∵E,N分別為,的中點,∴,∵平面,平面,∴平面,線段存在點N,使得平面,理由如下:由(1)知:平面,又,∴平面平面,又M是上的動點,平面,∴平面PAB,∴線段存在點N,使得MN∥平面20、(1)見解析(2)見解析(3)存在點P,【解析】(1)建立空間坐標系求兩直線的方向向量,根據(jù)數(shù)量積為0可證的結論;(2)求得直線的方向向量和面的法向量,證得兩向量垂直即可;(3)求直線的方向向量和面的法向量的夾角即可.【小問1詳解】由已知可得,,,兩兩垂直,以A為原點,,,所在直線為軸,軸,軸建立如圖空間直角坐標系,因為,所以,,,,,,,,,∴,,∴,,即,,∴平面又∵平面,∴【小問2詳解】設點坐標為,則,∵,∴,,,解得:,,,即設平面的一個法向量,∵,,∴,即,令,則,,得又,∴∴直線平面【小問3詳解】設,則,設的一個法向量為∵,,∴,解,令,則,,得設與平面所成角為,則.解得:或(舍).故存在點P,,即點P為距的第一個5等分點21、答案見解析.【解析】(1)若選①,根據(jù)通項公式與前項和的關系求解通項公式即可;若選②,根據(jù)可得數(shù)列為等差數(shù)列,利用基本量法求解通項公式即可;若選③,根據(jù)兩點間的斜率公式可得,可得數(shù)列為等差數(shù)列進而求得通項公式;(2)利用裂項相消求和即可

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論