福建省泉州市晉江市2024屆數(shù)學高二上期末聯(lián)考模擬試題含解析_第1頁
福建省泉州市晉江市2024屆數(shù)學高二上期末聯(lián)考模擬試題含解析_第2頁
福建省泉州市晉江市2024屆數(shù)學高二上期末聯(lián)考模擬試題含解析_第3頁
福建省泉州市晉江市2024屆數(shù)學高二上期末聯(lián)考模擬試題含解析_第4頁
福建省泉州市晉江市2024屆數(shù)學高二上期末聯(lián)考模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

福建省泉州市晉江市2024屆數(shù)學高二上期末聯(lián)考模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知橢圓:的左、右焦點分別為,,點P是橢圓上的動點,,,則的最小值為()A. B.C D.2.在棱長為2的正方體中,為線段的中點,則點到直線的距離為()A. B.C. D.3.已知數(shù)列是首項為,公差為1的等差數(shù)列,數(shù)列滿足.若對任意的,都有成立,則實數(shù)的取值范圍是()A., B.C., D.4.在三棱錐中,點E,F(xiàn)分別是的中點,點G在棱上,且滿足,若,則()A. B.C. D.5.《九章算術》與《幾何原本》并稱現(xiàn)代數(shù)學的兩大源泉.在《九章算術》卷五商功篇中介紹了羨除(此處是指三面為等腰梯形,其他兩側面為直角三角形的五面體)體積的求法.在如圖所示的羨除中,平面是鉛垂面,下寬,上寬,深,平面BDEC是水平面,末端寬,無深,長(直線到的距離),則該羨除的體積為()A. B.C. D.6.若拋物線x2=8y上一點P到焦點的距離為9,則點P的縱坐標為()A. B.C.6 D.77.從某個角度觀察籃球(如圖甲),可以得到一個對稱的平面圖形,如圖乙所示,籃球的外輪廓為圓,將籃球表面的粘合線視為坐標軸和雙曲線,若坐標軸和雙曲線與圓的交點將圓的周長八等分,且,則該雙曲線的離心率為()A. B.C.2 D.8.為推動黨史學習教育各項工作扎實開展,營造“學黨史、悟思想、辦實事、開新局”的濃厚氛圍,某校黨委計劃將中心組學習、專題報告會、黨員活動日、主題班會、主題團日這五種活動分5個階段安排,以推動黨史學習教育工作的進行,若主題班會、主題團日這兩個階段相鄰,且中心組學習必須安排在前兩階段并與黨員活動日不相鄰,則不同的安排方案共有()A.10種 B.12種C.16種 D.24種9.已知函數(shù),在上隨機任取一個數(shù),則的概率為()A. B.C. D.10.太極圖被稱為“中華第一圖”,閃爍著中華文明進程的光輝,它是由黑白兩個魚形紋組成的圖案,俗稱陰陽魚,太極圖展現(xiàn)了一種相互轉化,相對統(tǒng)一的和諧美.定義:能夠?qū)AO的周長和面積同時等分成兩個部分的函數(shù)稱為圓O的一個“太極函數(shù)”,設圓O:,則下列說法中正確的是()①函數(shù)是圓O的一個太極函數(shù)②圓O的所有非常數(shù)函數(shù)的太極函數(shù)都不能為偶函數(shù)③函數(shù)是圓O的一個太極函數(shù)④函數(shù)的圖象關于原點對稱是為圓O的太極函數(shù)的充要條件A.①② B.①③C.②③ D.③④11.橢圓的()A.焦點在x軸上,長軸長為2 B.焦點在y軸上,長軸長為2C.焦點在x軸上,長軸長為 D.焦點在y軸上,長軸長為12.設的內(nèi)角的對邊分別為的面積,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知、均為正實數(shù),且,則的最小值為___________.14.數(shù)學家歐拉年在其所著的《三角形幾何學》一書中提出:任意三角形的外心、重心、垂心在同一條直線上,后人稱這條直線為歐拉線,已知的頂點、,其歐拉線的方程為,則的外接圓方程為______.15.已知平面的法向量為,平面的法向量為,若,則___________.16.若不等式的解集是,則的值是___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)某企業(yè)計劃新購買臺設備,并將購買的設備分配給名年齡不同(視為技術水平不同)的技工加工一批模具,因技術水平不同而加工出的產(chǎn)品數(shù)量不同,故產(chǎn)生的經(jīng)濟效益也不同.若用變量表示不同技工的年齡,變量為相應的效益值(元),根據(jù)以往統(tǒng)計經(jīng)驗,他們的工作效益滿足最小二乘法,且關于的線性回歸方程為(1)試預測一名年齡為歲的技工使用該設備所產(chǎn)生的經(jīng)濟效益;(2)試根據(jù)的值判斷使用該批設備的技工人員所產(chǎn)生的的效益與技工年齡的相關性強弱(,則認為與線性相關性很強;,則認為與線性相關性不強);(3)若這批設備有兩道獨立運行的生產(chǎn)工序,且兩道工序出現(xiàn)故障的概率依次是,.若兩道工序都沒有出現(xiàn)故障,則生產(chǎn)成本不增加;若工序出現(xiàn)故障,則生產(chǎn)成本增加萬元;若工序出現(xiàn)故障,則生產(chǎn)成本增加萬元;若兩道工序都出現(xiàn)故障,則生產(chǎn)成本增加萬元.求這批設備增加的生產(chǎn)成本的期望參考數(shù)據(jù):,參考公式:回歸直線的斜率和截距的最小二乘估計分別為,,.18.(12分)給出以下三個條件:①;②,,成等比數(shù)列;③.請從這三個條件中任選一個,補充到下面問題中,并完成作答.若選擇多個條件分別作答,以第一個作答計分已知公差不為0的等差數(shù)列的前n項和為,,______(1)求數(shù)列的通項公式;(2)若,令,求數(shù)列的前n項和19.(12分)已知等差數(shù)列滿足,.(1)求數(shù)列的通項公式;(2)設,求數(shù)列的前n項和.20.(12分)圓過點A(1,-2),B(-1,4),求:(1)周長最小的圓的方程;(2)圓心在直線2x-y-4=0上的圓的方程21.(12分)已知拋物線的焦點為F,其中P為E的準線上一點,O是坐標原點,且(1)求拋物線E的方程;(2)過的直線與E交于C,D兩點,在x軸上是否存在定點,使得x軸平分?若存在,求出點M的坐標;若不存在,請說明理由22.(10分)已知橢圓C:過兩點(1)求C的方程;(2)定點M坐標為,過C右焦點的直線與C交于P,Q兩點,判斷是否為定值?若是,求出該定值,若不是,請說明理由

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】由橢圓的定義可得;利用基本不等式,若,則,當且僅當時取等號.【詳解】根據(jù)橢圓的定義可知,,即,因為,,所以,當且僅當,時等號成立.故選:A2、D【解析】根據(jù)正方體的性質(zhì),在直角△中應用等面積法求到直線的距離.【詳解】由正方體的性質(zhì):面,又面,故,直角△中,若到上的高為,∴,而,,,∴.故選:D.3、D【解析】由等差數(shù)列通項公式得,再結合題意得數(shù)列單調(diào)遞增,且滿足,,即,再解不等式即可得答案.【詳解】解:根據(jù)題意:數(shù)列是首項為,公差為1的等差數(shù)列,所以,由于數(shù)列滿足,所以對任意的都成立,故數(shù)列單調(diào)遞增,且滿足,,所以,解得故選:4、B【解析】利用空間向量的加、減運算即可求解.【詳解】由題意可得故選:B.5、C【解析】在,上分別取點,,使得,連接,,,把幾何體分割成一個三棱柱和一個四棱錐,然后由棱柱、棱錐體積公式計算【詳解】如圖,在,上分別取點,,使得,連接,,,則三棱柱是斜三棱柱,該羨除的體積三棱柱四棱錐.故選:C【點睛】思路點睛:本題考查求空間幾何體的體積,解題思路是觀察幾何體的結構特征,合理分割,將不規(guī)則幾何體體積的計算轉化為錐體、柱體體積的計算.考查了空間想象能力、邏輯思維能力、運算求解能力6、D【解析】設出P的縱坐標,利用拋物線的定義列出方程,求出答案.【詳解】由題意得:拋物線準線方程為,P點到拋物線的焦點的距離等于到準線的距離,設點縱坐標為,則,解得:.故選:D7、B【解析】設出雙曲線方程,把雙曲線上的點的坐標表示出來并代入到方程中,找到的關系即可求解.【詳解】以O為原點,AD所在直線為x軸建系,不妨設,則該雙曲線過點且,將點代入方程,故離心率為,故選:B【點睛】本題考查已知點在雙曲線上求雙曲線離心率的方法,屬于基礎題目8、A【解析】對中心組學習所在的階段分兩種情況討論得解.【詳解】解:如果中心組學習在第一階段,主題班會、主題團日在第二、三階段,則其它活動有2種方法;主題班會、主題團日在第三、四階段,則其它活動有1種方法;主題班會、主題團日在第四、五階段,則其它活動有1種方法,則此時共有種方法;如果中心組學習在第二階段,則第一階段只有1種方法,后面的三個階段有種方法.綜合得不同的安排方案共有10種.故選:A9、A【解析】先解不等式,然后由區(qū)間長度比可得.【詳解】解不等式,得,所以,即的概率為.故選:A10、B【解析】①③可以通過分析奇偶性和結合圖象證明出符合要求,②④可以舉出反例.【詳解】是奇函數(shù),且與圓O的兩交點坐標為,能夠?qū)AO的周長和面積同時等分為兩個部分,故符合題意,①正確;同理函數(shù)是圓O的一個太極函數(shù),③正確;例如,是偶函數(shù),也能將將圓O的周長和面積同時等分為兩個部分,故②錯誤;函數(shù)的圖象關于原點對稱不是為圓O的太極函數(shù)的充要條件,例如為奇函數(shù),但不滿足將圓O的周長和面積同時等分為兩個部分,所以④錯誤;故選:B11、B【解析】把橢圓方程化為標準方程可判斷焦點位置和求出長軸長.【詳解】橢圓化為標準方程為,所以,且,所以橢圓焦點在軸上,,長軸長為.故選:B.12、A【解析】利用三角形面積公式、二倍角正弦公式有,再由三角形內(nèi)角的性質(zhì)及余弦定理化簡求即可.【詳解】由,∴,在中,,∴,解得.故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由基本不等式可得出關于的不等式,即可解得的最小值.【詳解】因、均為正實數(shù),由基本不等式可得,整理可得,,,則,解得,當且僅當時,即當時,等號成立,故的最小值為.故答案為:.14、【解析】求出線段的垂直平分線方程,與歐拉線方程聯(lián)立,求出的外接圓圓心坐標,并求出外接圓的半徑,由此可得出的外接圓方程.【詳解】直線的斜率為,線段的中點為,所以,線段的垂直平分線的斜率為,則線段垂直平分線方程為,即,聯(lián)立,解得,即的外心為,所以,的外接圓的半徑為,因此,的外接圓方程為.故答案為:.【點睛】方法點睛:求圓的方程,主要有兩種方法:(1)幾何法:具體過程中要用到初中有關圓的一些常用性質(zhì)和定理如:①圓心在過切點且與切線垂直的直線上;②圓心在任意弦的中垂線上;③兩圓相切時,切點與兩圓心三點共線;(2)待定系數(shù)法:根據(jù)條件設出圓的方程,再由題目給出的條件,列出等式,求出相關量.一般地,與圓心和半徑有關,選擇標準式,否則,選擇一般式.不論是哪種形式,都要確定三個獨立參數(shù),所以應該有三個獨立等式15、2【解析】由,可兩平面的法向量也平行,從而可求出,進而可求得答案【詳解】因為平面的法向量為,平面的法向量為,,所以∥,所以存實數(shù)使,所以,所以,解得,所以,故答案為:216、【解析】利用和是方程的兩根,再利用根與系數(shù)的關系即可求出和的值,即可得的值.【詳解】由題意可得:方程的兩根是和,由根與系數(shù)的關系可得:,所以,所以,故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)元;(2)使用該批設備的技工人員所產(chǎn)生的的效益與技工年齡的相關性強;(3)0.13萬元.【解析】(1)直接把代入線性回歸方程即得解;(2)先求出,再代公式求出相關系數(shù)比較即得解;(3)設增加的生產(chǎn)成本為ξ(萬元),則ξ的可能取值為0,2,3,5,求出對應的概率即得解.小問1詳解】解:當時,.所以預測一名年齡為歲的技工使用該設備所產(chǎn)生的經(jīng)濟效益為元.【小問2詳解】解:由題得,所以,所以.因為,所以與線性相關性很強.所以使用該批設備的技工人員所產(chǎn)生的的效益與技工年齡的相關性強.【小問3詳解】解:設增加的生產(chǎn)成本為ξ(萬元),則ξ的可能取值為0,2,3,5P(ξ=0)=(1﹣0.02)×(1﹣0.03)=0.9506,P(ξ=2)=0.02×(1﹣0.03)=0.0194,P(ξ=3)=(1﹣0.02)×0.03=0.0294,P(ξ=5)=0.02×0.03=0.0006所以Eξ=0×0.9506+2×0.0194+3×0.0294+5×0.0006=0.13(萬元),所以這批設備增加的生產(chǎn)成本的期望為0.13萬元.18、(1)(2)【解析】(1)若選①,則根據(jù)等差數(shù)列的前n項和公式,結合,求得公差,可得答案;若選②,則根據(jù),,成等比數(shù)列,列出方程,結合,求得公差,可得答案;若選③,則根據(jù),列出方程,結合,求得公差,可得答案;(2)由(1)可得的表達式,利用錯位相減法,求得答案.【小問1詳解】設數(shù)列的公差為d選擇①,由題意得,又,則,所以;選擇②,由,,成等比數(shù)列,得,即,解得,或(舍去),所以;選擇③,由,得,解得,所以【小問2詳解】由題意知,∴①②①-②得∴,即.19、(1);(2).【解析】(1)將條件化為基本量并解出,進而求得答案;(2)通過裂項法即可求出答案.【小問1詳解】由,.得:解得:故.【小問2詳解】當時,.所以時,.20、(1)x2+(y-1)2=10;(2)(x-3)2+(y-2)2=20.【解析】(1)根據(jù)當AB為直徑時,過A,B的圓的半徑最小進行求解即可;(2)根據(jù)垂徑定理,通過解方程組求出圓心坐標,進而可以求出圓的方程.【詳解】解:(1)當AB為直徑時,過A,B的圓的半徑最小,從而周長最小,即AB中點(0,1)為圓心,半徑r=|AB|=.故圓的方程為x2+(y-1)2=10;(2)由于AB的斜率為k=-3,則AB的垂直平分線的斜率為,AB的垂直平分線的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論