版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
甘肅省白銀市會(huì)寧四中2023年高二數(shù)學(xué)第一學(xué)期期末監(jiān)測(cè)試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.拋物線有一條重要的性質(zhì):平行于拋物線的軸的光線,經(jīng)過拋物線上的一點(diǎn)反射后經(jīng)過它的焦點(diǎn).反之,從焦點(diǎn)發(fā)出的光線,經(jīng)過拋物線上的一點(diǎn)反射后,反射光線平行于拋物線的軸.已知拋物線,從點(diǎn)發(fā)出一條平行于x軸的光線,經(jīng)過拋物線兩次反射后,穿過點(diǎn),則光線從A出發(fā)到達(dá)B所走過的路程為()A.8 B.10C.12 D.142.橢圓的離心率為()A. B.C. D.3.如圖,橢圓的右焦點(diǎn)為,過與軸垂直的直線交橢圓于第一象限的點(diǎn),點(diǎn)關(guān)于坐標(biāo)原點(diǎn)的對(duì)稱點(diǎn)為,且,,則橢圓方程為()A. B.C. D.4.直線分別與曲線,交于,兩點(diǎn),則的最小值為()A. B.1C. D.25.設(shè),分別是雙曲線:的左、右焦點(diǎn),過點(diǎn)作的一條漸近線的垂線,垂足為,,為坐標(biāo)原點(diǎn),則雙曲線的離心率為()A. B.2C. D.6.已知傾斜角為的直線與雙曲線,相交于,兩點(diǎn),是弦的中點(diǎn),則雙曲線的漸近線的斜率是()A. B.C. D.7.已知空間向量,,且與互相垂直,則k的值是()A.1 B.C. D.8.已知橢圓的左,右焦點(diǎn)分別為,,直線與C交于點(diǎn)M,N,若四邊形的面積為且,則C的離心率為()A. B.C. D.9.早在古希臘時(shí)期,亞歷山大的科學(xué)家赫倫就發(fā)現(xiàn):光從一點(diǎn)直接傳播到另一點(diǎn)選擇最短路徑,即這兩點(diǎn)間的線段.若光從一點(diǎn)不是直接傳播到另一點(diǎn),而是經(jīng)由一面鏡子(即便鏡面是曲面)反射到另一點(diǎn),仍然選擇最短路徑.已知曲線,且將假設(shè)為能起完全反射作用的曲面鏡,若光從點(diǎn)射出,經(jīng)由上一點(diǎn)反射到點(diǎn),則()A. B.C. D.10.已知A(3,2),點(diǎn)F為拋物線的焦點(diǎn),點(diǎn)P在拋物線上移動(dòng),為使取得最小值,則點(diǎn)P的坐標(biāo)為()A.(0,0) B.(2,2)C. D.11.若一個(gè)正方體的全面積是72,則它的對(duì)角線長為()A. B.12C. D.612.已知橢圓:,左、右焦點(diǎn)分別為,過的直線交橢圓于兩點(diǎn),若的最大值為5,則的值是A.1 B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.過點(diǎn)作圓的切線,則切線方程為______.14.已知曲線與曲線有相同的切線,則________15.已知雙曲線:,斜率為的直線與E的左右兩支分別交于A,B兩點(diǎn),點(diǎn)P的坐標(biāo)為,直線AP交E于另一點(diǎn)C,直線BP交E于另一點(diǎn)D.若直線CD的斜率為,則E的離心率為___________16.如圖,某海輪以的速度航行,若海輪在點(diǎn)測(cè)得海面上油井在南偏東,向北航行后到達(dá)點(diǎn),測(cè)得油井在南偏東,海輪改為沿北偏東的航向再行駛到達(dá)點(diǎn),則,間的距離是________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓上的點(diǎn)到焦點(diǎn)的最大距離為3,離心率為.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)設(shè)直線與橢圓交于不同兩點(diǎn),與軸交于點(diǎn),且滿足,若,求實(shí)數(shù)的取值范圍.18.(12分)已知各項(xiàng)均為正數(shù)的等比數(shù)列{}的前4項(xiàng)和為15,且.(1)求{}的通項(xiàng)公式;(2)若,記數(shù)列{}前n項(xiàng)和為,求.19.(12分)已知橢圓的離心率為,直線與橢圓C相切于點(diǎn)(1)求橢圓C的方程;(2)已知直線與橢圓C交于不同的兩點(diǎn)M,N,與直線交于點(diǎn)Q(P,Q,M,N均不重合),記的斜率分別為,若.證明:為定值20.(12分)已知函數(shù).(1)求函數(shù)f(x)的單調(diào)區(qū)間;(2)若f(x)≥0對(duì)定義域內(nèi)的任意x恒成立,求實(shí)數(shù)a的取值范圍.21.(12分)求下列函數(shù)的導(dǎo)數(shù).(1);(2).22.(10分)四棱錐中,平面,四邊形為平行四邊形,(1)若為中點(diǎn),求證平面;(2)若,求面與面的夾角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】利用拋物線的定義求解.【詳解】如圖所示:焦點(diǎn)為,設(shè)光線第一次交拋物線于點(diǎn),第二次交拋物線于點(diǎn),過焦點(diǎn)F,準(zhǔn)線方程為:,作垂直于準(zhǔn)線于點(diǎn),作垂直于準(zhǔn)線于點(diǎn),則,,,,故選:C2、A【解析】由橢圓標(biāo)準(zhǔn)方程求得,再計(jì)算出后可得離心率【詳解】在橢圓中,,,,因此,該橢圓的離心率為.故選:A.【點(diǎn)睛】本題考查求橢圓的離心率,根據(jù)橢圓標(biāo)準(zhǔn)方程求出即可3、C【解析】連結(jié),設(shè),則,,由可求出,進(jìn)而可求出,得出橢圓方程.【詳解】由題意設(shè)橢圓的方程:,設(shè)左焦點(diǎn)為,連結(jié),由橢圓的對(duì)稱性易得四邊形為平行四邊形,由得,又,設(shè),則,,又,解得,又由,,解得,,,則橢圓的方程為.故選:C.【點(diǎn)睛】關(guān)鍵點(diǎn)睛:本題考查了橢圓的標(biāo)準(zhǔn)方程求解及橢圓的簡單幾何性質(zhì),在求解橢圓標(biāo)準(zhǔn)方程時(shí),關(guān)鍵是求解基本量,,.4、B【解析】設(shè),,,,得到,用導(dǎo)數(shù)法求解.【詳解】解:設(shè),,,,則,,,令,則,函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,時(shí),函數(shù)的最小值為1,故選:B5、D【解析】先求過右焦點(diǎn)且與漸近線垂直的直線方程,與漸近線方程聯(lián)立求點(diǎn)P的坐標(biāo),再用兩點(diǎn)間的距離公式,結(jié)合已知條件,得到關(guān)于a,c的關(guān)系式.【詳解】雙曲線的左右焦點(diǎn)分別為、,一條漸近線方程為,過與這條漸近線垂直的直線方程為,由,得到點(diǎn)P的坐標(biāo)為,又因?yàn)?,所以,所以,所?故選:D6、A【解析】依據(jù)點(diǎn)差法即可求得的關(guān)系,進(jìn)而即可得到雙曲線的漸近線的斜率.【詳解】設(shè),則由,可得則,即,則則雙曲線的漸近線的斜率為故選:A7、D【解析】由=0可求解【詳解】由題意,故選:D8、A【解析】根據(jù)題意可知四邊形為平行四邊形,設(shè),進(jìn)而得,根據(jù)四邊形面積求出點(diǎn)M的坐標(biāo),再代入橢圓方程得出關(guān)于e的方程,解方程即可.【詳解】如圖,不妨設(shè)點(diǎn)在第一象限,由橢圓的對(duì)稱性得四邊形為平行四邊形,設(shè)點(diǎn),由,得,因?yàn)樗倪呅蔚拿娣e為,所以,得,由,得,解得,所以,即點(diǎn),代入橢圓方程,得,整理得,由,得,解得,由,得.故選:A9、B【解析】記橢圓的右焦點(diǎn)為,根據(jù)橢圓定義,得到,由題中條件,確定本題的本質(zhì)即是求的最小值,結(jié)合題中數(shù)據(jù),即可求出結(jié)果.【詳解】記橢圓的右焦點(diǎn)為,根據(jù)橢圓的定義可得,,所以,因?yàn)?,?dāng)且僅當(dāng)三點(diǎn)共線時(shí),,即;由題意可得,求的值,即是求最短路徑,即求的最小值,所以的最小值為,因此.故選:B.【點(diǎn)睛】思路點(diǎn)睛:求解橢圓上動(dòng)點(diǎn)到一焦點(diǎn)和一定點(diǎn)距離和的最小值或差的最大值時(shí),一般需要利用橢圓的定義,將問題轉(zhuǎn)化為動(dòng)點(diǎn)與另一焦點(diǎn)以及該定點(diǎn)距離和的最值問題來求解即可.10、B【解析】設(shè)點(diǎn)P到準(zhǔn)線的距離為,根據(jù)拋物線的定義可知,即可根據(jù)點(diǎn)到直線的距離最短求出【詳解】如圖所示:設(shè)點(diǎn)P到準(zhǔn)線的距離為,準(zhǔn)線方程為,所以,當(dāng)且僅當(dāng)點(diǎn)為與拋物線的交點(diǎn)時(shí),取得最小值,此時(shí)點(diǎn)P的坐標(biāo)為故選:B11、D【解析】根據(jù)全面積得到正方體的棱長,再由勾股定理計(jì)算對(duì)角線.【詳解】設(shè)正方體的棱長為,對(duì)角線長為,則有,解得,從而,解得.故選:D12、D【解析】由題意可知橢圓是焦點(diǎn)在x軸上的橢圓,利用橢圓定義得到|BF2|+|AF2|=8﹣|AB|,再由過橢圓焦點(diǎn)的弦中通徑的長最短,可知當(dāng)AB垂直于x軸時(shí)|AB|最小,把|AB|的最小值b2代入|BF2|+|AF2|=8﹣|AB|,由|BF2|+|AF2|的最大值等于5列式求b的值即可【詳解】由0<b<2可知,焦點(diǎn)在x軸上,∵過F1的直線l交橢圓于A,B兩點(diǎn),則|BF2|+|AF2|+|BF1|+|AF1|=2a+2a=4a=8∴|BF2|+|AF2|=8﹣|AB|當(dāng)AB垂直x軸時(shí)|AB|最小,|BF2|+|AF2|值最大,此時(shí)|AB|=b2,則5=8﹣b2,解得b,故選D【點(diǎn)睛】本題考查直線與圓錐曲線的關(guān)系,考查了橢圓的定義,考查橢圓的通徑公式,考查計(jì)算能力,屬于中檔題二、填空題:本題共4小題,每小題5分,共20分。13、【解析】求出切點(diǎn)與圓心連線的斜率后可得切線方程.【詳解】因?yàn)辄c(diǎn)在圓上,故切線必垂直于切點(diǎn)與圓心連線,而切點(diǎn)與圓心連線的斜率為,故切線的斜率為,故切線方程為:即.故答案為:.14、0【解析】設(shè)切點(diǎn)分別為,.利用導(dǎo)數(shù)的幾何意義可得,則.由,,計(jì)算可得,進(jìn)而求得點(diǎn)坐標(biāo)代入方程即可求得結(jié)果.【詳解】設(shè)切點(diǎn)分別為,由題意可得,則,即因?yàn)?,,所以,即,解得,所以,則,解得故答案為:015、【解析】分別設(shè)線段的中點(diǎn),線段的中點(diǎn),再利用點(diǎn)差法可表示出,由平行關(guān)系易知三點(diǎn)共線,從而利用斜率相等的關(guān)系構(gòu)造方程,代入整理可得到關(guān)系,利用雙曲線得到關(guān)于的齊次方程,進(jìn)而求得離心率.【詳解】設(shè),,線段的中點(diǎn),兩式相減得:…①設(shè),,線段的中點(diǎn)同理可得:…②,易知三點(diǎn)共線,將①②代入得:,所以,即,由題意可得,故.∴,即故答案為:16、【解析】根據(jù)條件先由正弦定理求出的長,得出,求出的長,由勾股定理可得答案.【詳解】海輪向北航行后到達(dá)點(diǎn),則由題意,在中,又則,由正弦定理可得:,即在中,,所以故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2),或【解析】(1)由橢圓的性質(zhì)可知:,解得a和c的值,即可求得橢圓C的標(biāo)準(zhǔn)方程;(2)將直線方程代入橢圓方程,由韋達(dá)定理求得:,,λ,根據(jù)向量的坐標(biāo)坐標(biāo),(x1+1,y1)=λ(x2+1,y2),求得,由,代入即可求得實(shí)數(shù)m的取值范圍【詳解】(1)由已知,解得,所以,所以橢圓的標(biāo)準(zhǔn)方程為.(2)由已知,設(shè),聯(lián)立方程組,消得,由韋達(dá)定理得①②因?yàn)?,所以,所以③,將③代入①②,,消去得,所?因?yàn)?,所以,即,解得,所以,?【點(diǎn)睛】本題考查橢圓的標(biāo)準(zhǔn)方程及簡單性質(zhì),直線與橢圓的位置關(guān)系,韋達(dá)定理,向量的坐標(biāo)表示,不等式的解法,考查計(jì)算能力,屬于中檔題18、(1)(2)【解析】(1)設(shè)正項(xiàng)的等比數(shù)列的公比為,根據(jù)題意列出方程組,求得的值,即可求得數(shù)列的通項(xiàng)公式;(2)由,結(jié)合乘公比錯(cuò)位相減求和,即可求解.小問1詳解】解:設(shè)正項(xiàng)的等比數(shù)列的公比為,顯然不為1,因?yàn)榈缺葦?shù)列前4項(xiàng)和為且,可得,解得,所以數(shù)列的通項(xiàng)公式為.【小問2詳解】解:由,所以,可得,兩式相減得,所以.19、(1);(2)證明見解析.【解析】(1)根據(jù)橢圓離心率和橢圓經(jīng)過的點(diǎn)建立方程組,求解方程組可得橢圓的方程;(2)先根據(jù)相切求出直線的斜率,結(jié)合可得,再逐個(gè)求解,,然后可證結(jié)論.【小問1詳解】解:由題意,解得故橢圓C的方程為.【小問2詳解】證明:設(shè)直線的方程為,聯(lián)立得,因?yàn)橹本€與橢圓C相切,所以判別式,即,整理得,所以,故直線的方程為,因?yàn)椋?,設(shè)直線的方程為,聯(lián)立方程組解得故點(diǎn)Q坐標(biāo)為,聯(lián)立方程組,化簡得設(shè)點(diǎn)因?yàn)榕袆e式,得又,所以故,于是為定值.【點(diǎn)睛】直線與橢圓的相切問題一般是聯(lián)立方程,結(jié)合判別式為零求解;定值問題的求解一般結(jié)合目標(biāo)式中的項(xiàng),逐個(gè)求解,代入驗(yàn)證即可.20、(1)答案見解析(2)【解析】(1)求導(dǎo)數(shù),然后對(duì)進(jìn)行分類討論,利用導(dǎo)數(shù)的正負(fù),可得函數(shù)的單調(diào)區(qū)間;(2)利用(1)中函數(shù)的單調(diào)性,求得函數(shù)在處取得最小值,即可求實(shí)數(shù)的取值范圍.【小問1詳解】解:求導(dǎo)可得①時(shí),令可得,由于知;令,得∴函數(shù)在上單調(diào)遞減,在上單調(diào)遞增;②時(shí),令可得;令,得或,由于知或;∴函數(shù)在上單調(diào)遞減,在上單調(diào)遞增;③時(shí),,函數(shù)在上單調(diào)遞增;④時(shí),令可得;令,得或,由于知或∴函數(shù)在上單調(diào)遞減,在上單調(diào)遞增;【小問2詳解】由(1)時(shí),,(不符合,舍去)當(dāng)時(shí),在上單調(diào)遞減,在上單調(diào)遞增,故函數(shù)在處取得最小值,所以函數(shù)對(duì)定義域內(nèi)的任意x恒成立時(shí),只需要即可∴.綜上,.21、(1);(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025服務(wù)員聘用合同
- 2025借款合同填寫注意事項(xiàng)
- 施工安全合同書(乙方承擔(dān)全部責(zé)任版)
- 課題申報(bào)參考:黎巴嫩女性文學(xué)中的性別敘事與國家建構(gòu)
- 課題申報(bào)參考:老齡化背景下衰老信念對(duì)年長員工工作績效影響的機(jī)制研究
- 2025年新世紀(jì)版選修1歷史上冊(cè)階段測(cè)試試卷
- 2025年外研版三年級(jí)起點(diǎn)選擇性必修三語文上冊(cè)月考試卷
- 2024年華東師大版八年級(jí)地理上冊(cè)月考試卷含答案
- 2025年人教新起點(diǎn)八年級(jí)歷史下冊(cè)月考試卷含答案
- 2025年度物聯(lián)網(wǎng)設(shè)備制造與銷售合同范本4篇
- 2024年山東省泰安市高考物理一模試卷(含詳細(xì)答案解析)
- 護(hù)理指南手術(shù)器械臺(tái)擺放
- 腫瘤患者管理
- 2025年中國航空部附件維修行業(yè)市場(chǎng)競(jìng)爭格局、行業(yè)政策及需求規(guī)模預(yù)測(cè)報(bào)告
- 2025春夏運(yùn)動(dòng)戶外行業(yè)趨勢(shì)白皮書
- 《法制宣傳之盜竊罪》課件
- 通信工程單位勞動(dòng)合同
- 2024年醫(yī)療器械經(jīng)營質(zhì)量管理規(guī)范培訓(xùn)課件
- 零部件測(cè)繪與 CAD成圖技術(shù)(中職組)沖壓機(jī)任務(wù)書
- 2024年計(jì)算機(jī)二級(jí)WPS考試題庫380題(含答案)
- 高低壓配電柜產(chǎn)品營銷計(jì)劃書
評(píng)論
0/150
提交評(píng)論