




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
貴州省鳳岡縣二中2024屆高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)模擬試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫(xiě)在答題紙相應(yīng)的答題區(qū)內(nèi)。寫(xiě)在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.圓心在x軸上且過(guò)點(diǎn)的圓與y軸相切,則該圓的方程是()A. B.C. D.2.我國(guó)古代數(shù)學(xué)論著中有如下敘述:“遠(yuǎn)望巍巍塔七層,紅光點(diǎn)點(diǎn)倍加增,共燈二百五十四.”思如下:一座7層塔共掛了254盞燈,且相鄰兩層下一層所掛燈數(shù)是上一層所掛燈數(shù)的2倍.下列結(jié)論不正確的是()A.底層塔共掛了128盞燈B.頂層塔共掛了2盞燈C.最下面3層塔所掛燈的總盞數(shù)比最上面3層塔所掛燈的總盞數(shù)多200D.最下面3層塔所掛燈的總盞數(shù)是最上面3層塔所掛燈的總盞數(shù)的16倍3.設(shè)點(diǎn)關(guān)于坐標(biāo)原點(diǎn)的對(duì)稱點(diǎn)是B,則等于()A.4 B.C. D.24.若拋物線上一點(diǎn)到焦點(diǎn)的距離為5,則點(diǎn)的坐標(biāo)為()A. B.C. D.5.在等比數(shù)列中,,公比,則()A. B.6C. D.26.等比數(shù)列的第4項(xiàng)與第6項(xiàng)分別為12和48,則公比的值為()A. B.2C.或2 D.或7.設(shè)命題,,則為().A., B.,C., D.,8.△ABC的兩個(gè)頂點(diǎn)坐標(biāo)A(-4,0),B(4,0),它的周長(zhǎng)是18,則頂點(diǎn)C的軌跡方程是()A. B.(y≠0)C. D.9.已知,則方程與在同一坐標(biāo)系內(nèi)對(duì)應(yīng)的圖形編號(hào)可能是()A.①④ B.②③C.①② D.③④10.在空間直角坐標(biāo)系中,點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)為點(diǎn),則點(diǎn)到直線的距離為()A B.C. D.611.橢圓()的右頂點(diǎn)是拋物線的焦點(diǎn),且短軸長(zhǎng)為2,則該橢圓方程為()A. B.C. D.12.已知實(shí)數(shù)x,y滿足,則的取值范圍是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設(shè),若直線與直線平行,則的值是________14.若過(guò)點(diǎn)作圓的切線,則切線方程為_(kāi)__________.15.已知圓錐的母線長(zhǎng)為cm,其側(cè)面展開(kāi)圖是一個(gè)半圓,則底面圓的半徑為_(kāi)___cm.16.如圖,四棱錐的底面是正方形,底面,為的中點(diǎn),若,則點(diǎn)到平面的距離為_(kāi)__________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)如圖,三棱錐中,兩兩垂直,,且分別為線段的中點(diǎn).(1)若點(diǎn)是線段的中點(diǎn),求證:直線平面;(2)求證:平面平面.18.(12分)已知拋物線的焦點(diǎn)F,C上一點(diǎn)到焦點(diǎn)的距離為5(1)求C的方程;(2)過(guò)F作直線l,交C于A,B兩點(diǎn),若線段AB中點(diǎn)的縱坐標(biāo)為-1,求直線l的方程19.(12分)如圖,在四棱錐中,底面是矩形,,,,,為的中點(diǎn).(1)證明:平面;(2)求直線與平面所成角的正弦值.20.(12分)如圖,PA⊥平面ABCD,四邊形ABCD是正方形,PA=AD=2,M、N分別是AB、PC的中點(diǎn)(1)求證:平面MND⊥平面PCD;(2)求點(diǎn)P到平面MND的距離21.(12分)已知直線,直線經(jīng)過(guò)點(diǎn)且與直線平行,設(shè)直線分別與x軸,y軸交于A,B兩點(diǎn).(1)求點(diǎn)A和B的坐標(biāo);(2)若圓C經(jīng)過(guò)點(diǎn)A和B,且圓心C在直線上,求圓C的方程.22.(10分)已知橢圓.離心率為,點(diǎn)與橢圓的左、右頂點(diǎn)可以構(gòu)成等腰直角三角形(1)求橢圓的方程;(2)若直線與橢圓交于兩點(diǎn),為坐標(biāo)原點(diǎn)直線的斜率之積等于,試探求的面積是否為定值,并說(shuō)明理由
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】根據(jù)題意設(shè)出圓的方程,列式即可求出【詳解】依題可設(shè)圓的方程為,所以,解得即圓的方程是故選:A2、C【解析】由題設(shè)易知是公比為2的等比數(shù)列,應(yīng)用等比數(shù)列前n項(xiàng)和公式求,結(jié)合各選項(xiàng)的描述及等比數(shù)列通項(xiàng)公式、前n項(xiàng)和公式判斷正誤即可.【詳解】從上往下記每層塔所掛燈的盞數(shù)為,則數(shù)列是公比為2的等比數(shù)列,且,解得,所以頂層塔共掛了2盞燈,B正確;底層塔共掛了盞燈,A正確最上面3層塔所掛燈總盞數(shù)為14,最下面3層塔所掛燈的總盞數(shù)為224,C不正確,D正確故選:C.3、A【解析】求出點(diǎn)關(guān)于坐標(biāo)原點(diǎn)的對(duì)稱點(diǎn)是B,再利用兩點(diǎn)之間的距離即可求得結(jié)果.【詳解】點(diǎn)關(guān)于坐標(biāo)原點(diǎn)的對(duì)稱點(diǎn)是故選:A4、C【解析】設(shè),由拋物線的方程可得準(zhǔn)線方程為,由拋物線的性質(zhì)到焦點(diǎn)的距離等于到準(zhǔn)線的距離,求出,解出縱坐標(biāo),進(jìn)而求出【詳解】由題意可得,解得,代入拋物線的方程,解得,所以的坐標(biāo),故選:C.5、D【解析】利用等比數(shù)列的通項(xiàng)公式求解【詳解】由等比數(shù)列的通項(xiàng)公式得:.故選:D6、C【解析】根據(jù)等比數(shù)列的通項(xiàng)公式計(jì)算可得;詳解】解:依題意、,所以,即,所以;故選:C7、B【解析】根據(jù)全稱命題和特稱命題互為否定,即可得到結(jié)果.【詳解】因?yàn)槊},,所以為,.故選:B.8、D【解析】根據(jù)三角形的周長(zhǎng)得出,再由橢圓的定義得頂點(diǎn)C的軌跡為以A,B為焦點(diǎn)的橢圓,去掉A,B,C共線的情況,可求得頂點(diǎn)C的軌跡方程.【詳解】因?yàn)椋?,所以頂點(diǎn)C的軌跡為以A,B為焦點(diǎn)的橢圓,去掉A,B,C共線的情況,即,所以頂點(diǎn)C的軌跡方程是,故選:D.【點(diǎn)睛】本題考查橢圓的定義,由定義求得動(dòng)點(diǎn)的軌跡方程,求解時(shí),注意去掉不滿足的點(diǎn),屬于基礎(chǔ)題.9、B【解析】結(jié)合橢圓、雙曲線、拋物線的圖像,分別對(duì)①②③④分析m、n的正負(fù),即可得到答案.【詳解】對(duì)于①:由雙曲線的圖像可知:;由拋物線的圖像可知:同號(hào),矛盾.故①錯(cuò)誤;對(duì)于②:由雙曲線的圖像可知:;由拋物線的圖像可知:異號(hào),符合要求.故②成立;對(duì)于③:由橢圓的圖像可知:;由拋物線的圖像可知:同號(hào),且拋物線的焦點(diǎn)在x軸上,符合要求.故③成立;對(duì)于④:由橢圓的圖像可知:;由拋物線的圖像可知:同號(hào),且拋物線的焦點(diǎn)在x軸上,矛盾.故④錯(cuò)誤;故選:B10、C【解析】按照空間中點(diǎn)到直線的距離公式直接求解.【詳解】由題意,,,的方向向量,,則點(diǎn)到直線的距離為.故選:C.11、A【解析】求得拋物線的焦點(diǎn)從而求得,再結(jié)合題意求得,即可寫(xiě)出橢圓方程.【詳解】因?yàn)閽佄锞€的焦點(diǎn)坐標(biāo)為,故可得;又短軸長(zhǎng)為2,故可得,即;故橢圓方程為:.故選:.12、B【解析】實(shí)數(shù),滿足,通過(guò)討論,得到其圖象是橢圓、雙曲線的一部分組成的圖形,借助圖象分析可得的取值就是圖象上一點(diǎn)到直線距離范圍的2倍,求出切線方程根據(jù)平行直線距離公式算出最小值,和最大值的極限值即可得出答案.【詳解】因?yàn)閷?shí)數(shù),滿足,所以當(dāng)時(shí),,其圖象是位于第一象限,焦點(diǎn)在軸上的雙曲線的一部分(含點(diǎn)),當(dāng)時(shí),其圖象是位于第四象限,焦點(diǎn)在軸上的橢圓的一部分,當(dāng)時(shí),其圖象不存在,當(dāng)時(shí),其圖象是位于第三象限,焦點(diǎn)在軸上的雙曲線的一部分,作出橢圓和雙曲線的圖象,其中圖象如下:任意一點(diǎn)到直線的距離所以,結(jié)合圖象可得的范圍就是圖象上一點(diǎn)到直線距離范圍的2倍,雙曲線,其中一條漸近線與直線平行,通過(guò)圖形可得當(dāng)曲線上一點(diǎn)位于時(shí),取得最小值,無(wú)最大值,小于兩平行線與之間的距離的倍,設(shè)與其圖像在第一象限相切于點(diǎn),由因?yàn)榛颍ㄉ崛ィ┧灾本€與直線的距離為此時(shí),所以的取值范圍是故選:B【點(diǎn)睛】三種距離公式:(1)兩點(diǎn)間的距離公式:平面上任意兩點(diǎn)間的距離公式為;(2)點(diǎn)到直線的距離公式:點(diǎn)到直線的距離;(3)兩平行直線間的距離公式:兩條平行直線與間的距離.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】先通過(guò)討論分成斜率存在和不存在兩種情況,然后再按照兩直線平行的判定方法求解即可.【詳解】由已知可得,當(dāng)時(shí),兩直線分別為和,此時(shí),兩直線不平行;當(dāng)時(shí),要使得兩直線平行,即,解得,.故答案為:14、或【解析】根據(jù)圓心到切線的距離等于圓的半徑即可求解.【詳解】由題意可知,,故在圓外,則過(guò)點(diǎn)做圓的切線有兩條,且切線斜率必存在,設(shè)切線為,即,則圓心到直線的距離,解得或,故切線方程為或故答案為:或15、【解析】根據(jù)題意可知圓錐側(cè)面展開(kāi)圖的半圓的半徑為cm,再根據(jù)底面圓的周長(zhǎng)等于側(cè)面的弧長(zhǎng),即可求出結(jié)果.【詳解】設(shè)底面圓的半徑為,由于側(cè)面展開(kāi)圖是一個(gè)半圓,又圓錐的母線長(zhǎng)為cm,所以該半圓的半徑為cm,所以,所以(cm).故答案為:.16、【解析】以點(diǎn)為坐標(biāo)原點(diǎn),、、所在直線分別為、、軸建立空間直角坐標(biāo)系,利用空間向量法可求得點(diǎn)到平面的距離.【詳解】因?yàn)榈酌?,,以點(diǎn)為坐標(biāo)原點(diǎn),、、所在直線分別為、、軸建立空間直角坐標(biāo)系,則、、、,設(shè)平面的法向量為,,,則,取,可得,,所以,點(diǎn)到平面的距離為.故答案為:.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)證明見(jiàn)解析(2)證明見(jiàn)解析【解析】(1)由題意可得,從而可證.(2)由題意可得平面,從而可得,由根據(jù)條件可得,從而可得平面,從而可得證.【小問(wèn)1詳解】由分別為線段的中點(diǎn).由中位線定理知,又平面,且平面,所以直線平面【小問(wèn)2詳解】?jī)蓛纱怪?,?且所以平面,又平面,所以由,且分別為線段的中點(diǎn),所以,因此根據(jù)線面垂直判定定理得平面,且平面所以平面平面.18、(1);(2).【解析】(1)由拋物線的定義,結(jié)合已知有求p,寫(xiě)出拋物線方程.(2)由題意設(shè)直線l為,聯(lián)立拋物線方程,應(yīng)用韋達(dá)定理可得,由中點(diǎn)公式有,進(jìn)而求k值,寫(xiě)出直線方程.【詳解】(1)由題意知:拋物線的準(zhǔn)線為,則,可得,∴C的方程為.(2)由(1)知:,由題意知:直線l的斜率存在,令其方程為,∴聯(lián)立拋物線方程,得:,,若,則,而線段AB中點(diǎn)的縱坐標(biāo)為-1,∴,即,得,∴直線l的方程為.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:(1)利用拋物線定義求參數(shù),寫(xiě)出拋物線方程;(2)由直線與拋物線相交,以及相交弦的中點(diǎn)坐標(biāo)值,應(yīng)用韋達(dá)定理、中點(diǎn)公式求直線斜率,并寫(xiě)出直線方程.19、(1)證明見(jiàn)解析;(2).【解析】(1)由可得,再結(jié)合和線面垂直的判定定理可得平面,則,再由可得平面.(2)以為原點(diǎn),,,為軸,軸,軸,建立空間直角坐標(biāo)系如圖所示,利用空間向量求解即可【詳解】(1)證明:∵為矩形,且,∴.又∵,.∴,.又∵,,∴平面.∵平面,∴又∵,,∴平面.(2)解:以為原點(diǎn),,,為軸,軸,軸,建立空間直角坐標(biāo)系如圖所示:則,,,,,∴,,設(shè)平面法向量則,即∴,∴∴直線與所成角的正弦值為.20、(1)見(jiàn)解析;(2)【解析】(1)作出如圖所示空間直角坐標(biāo)系,根據(jù)題中數(shù)據(jù)可得、、的坐標(biāo),利用垂直向量數(shù)量積為零的方法算出平面、平面的法向量分別為,,和,1,,算出,可得,從而得出平面平面;(2)由(1)中求出的平面法向量,,與向量,2,,利用點(diǎn)到平面的距離公式加以計(jì)算即可得到點(diǎn)到平面的距離【詳解】(1)證明:平面,,、、兩兩互相垂直,如圖所示,分別以、、所在直線為軸、軸和軸建立空間直角坐標(biāo)系,則,0,,,0,,,2,,,2,,,0,,,0,,,1,,,1,,,1,,,2,設(shè),,是平面的一個(gè)法向量,可得,取,得,,,,是平面的一個(gè)法向量,同理可得,1,是平面的一個(gè)法向量,,,即平面的法向量與平面的法向量互相垂直,可得平面平面;(2)解:由(1)得,,是平面的一個(gè)法向量,,2,,得,點(diǎn)到平面的距離21、(1),;(2).【解析】(1)由直線平行及所過(guò)的點(diǎn),應(yīng)用點(diǎn)斜式寫(xiě)出直線方程,進(jìn)而求A、B坐標(biāo).(2)由(1)求出垂直平分線方程,并聯(lián)立直線求圓心坐標(biāo),即可求圓的半徑,進(jìn)而寫(xiě)出圓C的方程.【小問(wèn)1詳解】由題設(shè),的斜率為,又直線與直線平行且過(guò),所以直線為,即,令,則;令,則.所以,.【小問(wèn)2詳解】由(1)可得:垂直平分線為,即,聯(lián)立,可得,即,故圓的半徑為,所以圓C的方程為.22、(1);(2)是定值,理由
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 教師資格證復(fù)習(xí)計(jì)劃建議試題及答案
- 2024年計(jì)算機(jī)二級(jí)考試問(wèn)題探討試題及答案
- 卵巢黃體破裂護(hù)理查房
- 城市化與地理分布的變化趨勢(shì)分析試題及答案
- 黑龍江林業(yè)職業(yè)技術(shù)學(xué)院《日語(yǔ)會(huì)話IV》2023-2024學(xué)年第二學(xué)期期末試卷
- 黑龍江省七臺(tái)河市重點(diǎn)中學(xué)2025屆高三高考英語(yǔ)試題系列模擬卷(7)含解析
- 黑龍江省佳木斯市第一中學(xué)2025屆高三下學(xué)期摸底考試語(yǔ)文試題含解析
- 黑龍江省哈爾濱九中2025屆高三下學(xué)期第二次調(diào)研考試化學(xué)試題試卷含解析
- 黑龍江省哈爾濱市巴彥縣2025年五下數(shù)學(xué)期末預(yù)測(cè)試題含答案
- 古代詩(shī)詞的音樂(lè)特征與文化價(jià)值試題及答案
- 小學(xué)第三學(xué)段培養(yǎng)數(shù)學(xué)模型意識(shí)研究-以南昌市A小學(xué)為例
- 中國(guó)電磁加熱器行業(yè)市場(chǎng)現(xiàn)狀分析及競(jìng)爭(zhēng)格局與投資發(fā)展研究報(bào)告2024-2029版
- 2.3.5 重力壩揚(yáng)壓力計(jì)算示例講解
- 肺孢子菌肺炎新課件
- 高純碳酸鋰行業(yè)報(bào)告
- 湘教版七年級(jí)數(shù)學(xué)下冊(cè) 第2章 整式的乘法 單元測(cè)試卷
- 6G網(wǎng)絡(luò)-技術(shù)架構(gòu)與應(yīng)用探索
- 2024年西安印鈔有限公司招聘筆試參考題庫(kù)含答案解析
- 語(yǔ)文課趣味小游戲=
- 學(xué)校安全隱患排查治理清單
- 蘇教版五年級(jí)數(shù)學(xué)下冊(cè) (分?jǐn)?shù)與除法的關(guān)系)認(rèn)識(shí)分?jǐn)?shù)課件
評(píng)論
0/150
提交評(píng)論