版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
河北省各地2024屆數(shù)學高二上期末教學質(zhì)量檢測試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.一組樣本數(shù)據(jù):,,,,,由最小二乘法求得線性回歸方程為,若,則實數(shù)m的值為()A.5 B.6C.7 D.82.圓錐曲線具有豐富的光學性質(zhì),從橢圓的一個焦點發(fā)出的光線,經(jīng)過橢圓反射后,反射光線經(jīng)過橢圓的另一個焦點.直線l:與橢圓C:相切于點P,橢圓C的焦點為,,由光學性質(zhì)知直線,與l的夾角相等,則的角平分線所在的直線的方程為()A. B.C. D.3.設(shè)某大學的女生體重y(單位:kg)與身高x(單位:cm)具有線性相關(guān)關(guān)系,根據(jù)一組樣本數(shù)據(jù)(xi,yi)(i=1,2,…,n),用最小二乘法建立的回歸方程為=0.85x-85.71,則下列結(jié)論中不正確的是A.y與x具有正的線性相關(guān)關(guān)系B.回歸直線過樣本點中心(,)C.若該大學某女生身高增加1cm,則其體重約增加0.85kgD.若該大學某女生身高為170cm,則可斷定其體重必為58.79kg4.數(shù)列1,6,15,28,45,…中的每一項都可用如圖所示的六邊形表示出米,故稱它們?yōu)榱呅螖?shù),那么第11個六邊形數(shù)為()A.153 B.190C.231 D.2765.給出下列判斷,其中正確的是()A.三點唯一確定一個平面B.一條直線和一個點唯一確定一個平面C.兩條平行直線與同一條直線相交,三條直線在同一平面內(nèi)D.空間兩兩相交的三條直線在同一平面內(nèi)6.雙曲線的離心率為,則其漸近線方程為A. B.C. D.7.已知橢圓的中心為,一個焦點為,在上,若是正三角形,則的離心率為()A. B.C. D.8.某商場有四類食品,其中糧食類、植物油類、動物性食品類以及果蔬類分別有40種、10種、30種、20種,現(xiàn)從中抽取一個容量為20的樣本進行食品安全檢測.若采用分層抽樣的方法抽取樣本,則抽取的植物油類與果蔬類食品種數(shù)之和是()A.4 B.5C.6 D.79.拋物線的焦點坐標是()A.(0,-1) B.(-1,0)C. D.10.命題“,均有”的否定為()A.,均有 B.,使得C.,使得 D.,均有11.過橢圓右焦點作x軸的垂線,并交C于A,B兩點,直線l過C的左焦點和上頂點.若以線段AB為直徑的圓與有2個公共點,則C的離心率e的取值范圍是()A. B.C. D.12.數(shù)列滿足,,,則數(shù)列的前8項和為()A.25 B.26C.27 D.28二、填空題:本題共4小題,每小題5分,共20分。13.已知雙曲線的左、右焦點分別為,雙曲線左支上點滿足,則的面積為_________14.已知曲線,①若,則是橢圓,其焦點在軸上;②若,則是圓,其半徑為;③若,則是雙曲線,其漸近線方程為;④若,,則是兩條直線.以上四個命題,其中正確的序號為_________.15.如圖,在三棱錐P–ABC的平面展開圖中,AC=1,,AB⊥AC,AB⊥AD,∠CAE=30°,則cos∠FCB=______________.16.已知直線與平行,則實數(shù)的值為_____________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知,,其中.(1)求的值;(2)設(shè)(其中、為正整數(shù)),求的值.18.(12分)已知等比數(shù)列的前項和為,且.(1)求數(shù)列的通項公式;(2)令,求數(shù)列的前項和.19.(12分)已知橢圓的離心率為,橢圓過點.(1)求橢圓C的方程;(2)過點的直線交橢圓于M、N兩點,已知直線MA,NA分別交直線于點P,Q,求的值.20.(12分)如圖,在長方體中,,.點E在上,且(1)求證:平面;(2)求二面角的余弦值21.(12分)排一張有6個歌唱節(jié)目和5個舞蹈節(jié)目的演出節(jié)目單.(1)任何兩個舞蹈節(jié)目不相鄰的排法有多少種?(2)歌唱節(jié)目與舞蹈節(jié)目間隔排列的方法有多少種?22.(10分)已知圓關(guān)于直線對稱,且圓心C在軸上.(1)求圓C的方程;(2)直線與圓C交于A、B兩點,若為等腰直角三角形,求直線的方程.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】求出樣本的中心點,再利用回歸直線必過樣本的中心點計算作答.【詳解】依題意,,則這個樣本的中心點為,因此,,解得,所以實數(shù)m的值為6.故選:B2、A【解析】先求得點坐標,然后求得的角平分線所在的直線的方程.【詳解】,直線的斜率為,由于直線,與l的夾角相等,則的角平分線所在的直線的斜率為,所以所求直線方程為.故選:A3、D【解析】根據(jù)y與x的線性回歸方程為y=0.85x﹣85.71,則=0.85>0,y與x具有正的線性相關(guān)關(guān)系,A正確;回歸直線過樣本點的中心(),B正確;該大學某女生身高增加1cm,預測其體重約增加0.85kg,C正確;該大學某女生身高為170cm,預測其體重約為0.85×170﹣85.71=58.79kg,D錯誤故選D4、C【解析】細心觀察,尋求相鄰項及項與序號之間的關(guān)系,同時聯(lián)系相關(guān)知識,如等差數(shù)列、等比數(shù)列等,結(jié)合圖形即可求解.【詳解】由題意知,數(shù)列的各項為1,6,15,28,45,...所以,,,,,,所以.故選:C5、C【解析】根據(jù)確定平面的條件可對每一個選項進行判斷.【詳解】對A,如果三點在同一條直線上,則不能確定一個平面,故A錯誤;對B,如果這個點在這條直線上,就不能確定一個平面,故B錯誤;對C,兩條平行直線確定一個平面,一條直線與這兩條平行直線都相交,則這條直線就在這兩條平行直線確定的一個平面內(nèi),故這三條直線在同一平面內(nèi),C正確;對D,空間兩兩相交的三條直線可確定一個平面,也可確定三個平面,故D錯誤.故選:C6、A【解析】分析:根據(jù)離心率得a,c關(guān)系,進而得a,b關(guān)系,再根據(jù)雙曲線方程求漸近線方程,得結(jié)果.詳解:因為漸近線方程為,所以漸近線方程為,選A.點睛:已知雙曲線方程求漸近線方程:.7、D【解析】根據(jù)是正三角形可得的坐標,代入方程后可求離心率.【詳解】不失一般性,可設(shè)橢圓的方程為:,為半焦距,為右焦點,因為且,故,故,,整理得到,故,故選:D.8、C【解析】按照分層抽樣的定義進行抽取.【詳解】按照分層抽樣的定義有,糧食類:植物油類:動物性食品類:果蔬類=4:1:3:2,抽20個出來,則糧食類8個,植物油類2個,動物性食品類6個,果蔬類4個,則抽取的植物油類與果蔬類食品種數(shù)之和是6個.故選:C.9、C【解析】根據(jù)拋物線標準方程,可得p的值,進而求出焦點坐標.【詳解】由拋物線可知其開口向下,,所以焦點坐標為,故選:C.10、C【解析】全稱命題的否定是特稱命題【詳解】根據(jù)全稱命題的否定是特稱命題,所以命題“,均有”的否定為“,使得”故選:C11、A【解析】求得以為直徑的圓的圓心和半徑,求得直線的方程,利用圓心到直線的距離小于半徑列不等式,化簡后求得橢圓離心率的取值范圍.【詳解】橢圓的左焦點,右焦點,上頂點,,所以為直徑的圓的圓心為,半徑為.直線的方程為,由于以線段為直徑的圓與相交,所以,,,,,所以橢圓的離心率的取值范圍是.故選:A12、C【解析】根據(jù)通項公式及求出,從而求出前8項和.【詳解】當時,,當時,,當時,,當時,,當時,,當時,,則數(shù)列的前8項和為.故選:C二、填空題:本題共4小題,每小題5分,共20分。13、3【解析】由雙曲線方程可得,利用雙曲線定義,以及直角三角形的勾股定理可得,由此求得答案.【詳解】由雙曲線的左、右焦點分別為,雙曲線左支上點滿足,可得:,則,且,故,所以,故,故答案為:314、①③④【解析】通過m,n的取值判斷焦點坐標所在軸,判斷①,求出圓的半徑判斷②;通過求解雙曲線的漸近線方程,判斷③;利用,,判斷曲線是否是兩條直線判斷④【詳解】解:①若,則,因為方程化為:,焦點坐標在y軸,所以①正確;②若,則C是圓,其半徑為:,不一定是,所以②不正確;③若,則C是雙曲線,其漸近線方程為,化簡可得,所以③正確;④若,,方程化為,則C是兩條直線,所以④正確;故答案為:①③④15、【解析】在中,利用余弦定理可求得,可得出,利用勾股定理計算出、,可得出,然后在中利用余弦定理可求得的值.【詳解】,,,由勾股定理得,同理得,,在中,,,,由余弦定理得,,在中,,,,由余弦定理得.故答案為:.【點睛】本題考查利用余弦定理解三角形,考查計算能力,屬于中等題.16、或【解析】根據(jù)平行線的性質(zhì)進行求解即可.【詳解】因為直線與平行,所以有:或,故答案為:或三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1),,寫出的展開式通項,由可得出關(guān)于的方程,解出的值,再利用賦值法可求得所求代數(shù)式的值;(2)寫出的展開式,求出、的值,即可求得的值.【小問1詳解】解:設(shè),,的展開式通項為,所以,,即,,解得,所以,.【小問2詳解】解:,,,因此,18、(1)(2)【解析】(1)根據(jù)得到,再結(jié)合為等比數(shù)列求出首項,進而求得數(shù)列的通項公式;(2)由(1)求得數(shù)列的通項公式,進而利用公式法即可求出【小問1詳解】解:(1),,當時,,即,又,為等比數(shù)列,所以,,數(shù)列的通項公式為【小問2詳解】(2)由(1)知,則,數(shù)列的前項和19、(1)(2)1【解析】(1)由題意得到關(guān)于a,b的方程組,求解方程組即可確定橢圓方程;(2)首先聯(lián)立直線與橢圓的方程,然后由直線MA,NA的方程確定點P,Q的縱坐標,將線段長度的比值轉(zhuǎn)化為縱坐標比值的問題,進一步結(jié)合韋達定理可證得,從而可得兩線段長度的比值.【小問1詳解】由題意,點橢圓上,有,解得故橢圓C的方程為.【小問2詳解】當直線l的斜率不存在時,顯然不符;當直線l的斜率存在時,設(shè)直線l為:聯(lián)立方程得:由,設(shè),有又由直線AM:,令x=-4得,將代入得:,同理得:.很明顯,且,注意到,,而,故所以.【點睛】本題考查求橢圓的方程,解題關(guān)鍵是利用離心率與橢圓上的點,找到關(guān)于a,b,c的等量關(guān)系求解a與b.本題中直線方程代入橢圓方程整理后應(yīng)用韋達定理求出,.表示出,,然后轉(zhuǎn)化為相應(yīng)的比值關(guān)系.考查了學生的運算求解能力,邏輯推理能力.屬于中檔題20、(1)證明見解析(2)【解析】(1)建立空間直角坐標系,分別寫出,,的坐標,證明,,即可得證;(2)由(1)知,的法向量為,直接寫出平面法向量,按照公式求解即可.【小問1詳解】在長方體中,以為坐標原點,所在直線分別為軸,軸,軸建立如圖所示空間直角坐標系因為,,所以,,,,,則,,,所以有,,則,,又所以平面小問2詳解】由(1)知平面的法向量為,而平面法向量為所以,由圖知二面角為銳二面角,所以二面角的余弦值為21、(1)(2)【解析】(1)用插空法,現(xiàn)排唱歌,利用產(chǎn)生的空排跳舞;(2)先排唱歌再排舞蹈.【小問1詳解】解:先排歌唱節(jié)目有種,歌唱節(jié)目之間以及兩端共有7個空位,從中選5個放入舞蹈節(jié)目,共有種方法,所以任何兩個舞蹈節(jié)目不相鄰的排法有種方法.【小問2詳解】解:先排舞
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 個人健身房設(shè)備租賃合同(2024版)3篇
- 2025版仲裁申請書行政公文范本制作與培訓服務(wù)合同2篇
- 2025版論行政合同中行政主體權(quán)益保護與義務(wù)履約4篇
- 2024版商業(yè)房產(chǎn)銷售合同條款樣本
- 2025年度文化創(chuàng)意產(chǎn)業(yè)園區(qū)土地承包協(xié)議范本4篇
- 2025年度茶葉行業(yè)人才培訓與就業(yè)合作合同4篇
- 二零二五年方管行業(yè)質(zhì)量標準制定合同3篇
- 2025年度智能家居系統(tǒng)瓷磚采購合同協(xié)議書4篇
- 專利技術(shù)成果應(yīng)用許可合同2024版一
- 二零二五年度裝配式建筑構(gòu)件設(shè)計、制造與施工合同3篇
- 寒潮雨雪應(yīng)急預案范文(2篇)
- 垃圾車駕駛員聘用合同
- 變壓器搬遷施工方案
- 單位轉(zhuǎn)賬個人合同模板
- 八年級語文下冊 成語故事 第十五課 諱疾忌醫(yī) 第六課時 口語交際教案 新教版(漢語)
- 2024年1月高考適應(yīng)性測試“九省聯(lián)考”數(shù)學 試題(學生版+解析版)
- EPC項目采購階段質(zhì)量保證措施
- T-NAHIEM 101-2023 急診科建設(shè)與設(shè)備配置標準
- 四川2024年專業(yè)技術(shù)人員公需科目“數(shù)字經(jīng)濟與驅(qū)動發(fā)展”參考答案(通用版)
- 煤炭裝卸服務(wù)合同
- 廣東省佛山市順德區(qū)2023學年中考一模物理試題(含答案解析)
評論
0/150
提交評論