




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
河南省信陽市達(dá)權(quán)店高級(jí)中學(xué)2024屆數(shù)學(xué)高二上期末質(zhì)量檢測(cè)模擬試題注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.“楊輝三角”是中國古代數(shù)學(xué)文化的瑰寶之一,最早在中國南宋數(shù)學(xué)家楊輝1261年所著的《詳解九章算法》一書中出現(xiàn).如圖所示的楊輝三角中,第8行,第3個(gè)數(shù)是()第0行1第1行11第2行121第3行1331第4行14641……A.21 B.28C.36 D.562.直線的傾斜角為()A.60° B.30°C.120° D.150°3.南宋數(shù)學(xué)家楊輝所著的《詳解九章算法》中有如下俯視圖所示的幾何體,后人稱之為“三角垛”.其最上層有1個(gè)球,第二層有3個(gè)球,第三層有6個(gè)球,…,則第十層球的個(gè)數(shù)為()A.45 B.55C.90 D.1104.若x,y滿足約束條件,則的最大值為()A.1 B.0C.?1 D.?35.如圖所示,直三棱柱中,,,分別是,的中點(diǎn),,則與所成角的余弦值為()A. B.C. D.6.已知,分別為雙曲線:的左,右焦點(diǎn),以為直徑的圓與雙曲線的右支在第一象限交于點(diǎn),直線與雙曲線的右支交于點(diǎn),點(diǎn)恰好為線段的三等分點(diǎn)(靠近點(diǎn)),則雙曲線的離心率等于()A. B.C. D.7.若方程表示雙曲線,則實(shí)數(shù)m的取值范圍是()A. B.C. D.8.若雙曲線(,)的一條漸近線經(jīng)過點(diǎn),則雙曲線的離心率為()A. B.C. D.29.雙曲線的兩個(gè)焦點(diǎn)為,,雙曲線上一點(diǎn)到的距離為8,則點(diǎn)到的距離為()A.2或12 B.2或18C.18 D.210.饕餮紋是青銅器上常見的花紋之一,最早見于長(zhǎng)江中下游地區(qū)的良渚文化陶器和玉器上,盛行于商代至西周早期.將青銅器中的饕餮紋的一部分畫到方格紙上,如圖所示,每個(gè)小方格的邊長(zhǎng)為一個(gè)單位長(zhǎng)度,有一點(diǎn)從點(diǎn)出發(fā),每次向右或向下跳一個(gè)單位長(zhǎng)度,且向右或向下跳是等可能的,那么點(diǎn)經(jīng)過3次跳動(dòng)后恰好是沿著饕餮紋的路線到達(dá)點(diǎn)的概率為()A. B.C. D.11.如圖,已知四棱錐,底面ABCD是邊長(zhǎng)為4的菱形,且,E為AD的中點(diǎn),,則異面直線PC與BE所成角的余弦值為()A. B.C. D.12.已知雙曲線的離心率為2,且與橢圓有相同的焦點(diǎn),則該雙曲線的漸近線方程為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.經(jīng)過兩直線l1:x-2y+4=0和l2:x+y-2=0的交點(diǎn)P,且與直線l3:3x-4y+5=0垂直的直線l的方程為________14.在空間直角坐標(biāo)系中,點(diǎn)到x軸的距離為___________.15.圓錐曲線的焦點(diǎn)在軸上,離心率為,則實(shí)數(shù)的值是__________.16.設(shè)函數(shù)滿足,則______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐中中,平面ABCD,底面ABCD是邊長(zhǎng)為2的正方形,.(1)求證:平面;(2)求二面角的平面角的余弦值.18.(12分)已知函數(shù).(1)若與在處有相同的切線,求實(shí)數(shù)的取值;(2)若時(shí),方程在上有兩個(gè)不同的根,求實(shí)數(shù)的取值范圍.19.(12分)在中,內(nèi)角,,的對(duì)邊分別為,,.若,且.(1)求角的大??;(2)若的面積為,求的最大值.20.(12分)為了謳歌中華民族實(shí)現(xiàn)偉大復(fù)興的奮斗歷程,增進(jìn)學(xué)生對(duì)中國共產(chǎn)黨的熱愛,某學(xué)校舉辦了一場(chǎng)黨史競(jìng)賽活動(dòng),共有名學(xué)生參加了此次競(jìng)賽活動(dòng).為了解本次競(jìng)賽活動(dòng)的成績(jī),從中抽取了名學(xué)生的得分(得分均為整數(shù),滿分為分)進(jìn)行統(tǒng)計(jì),所有學(xué)生的得分都不低于分,將這名學(xué)生的得分進(jìn)行分組,第一組,第二組,第三組,第四組(單位:分),得到如下的頻率分布直方圖(1)求圖中的值,估計(jì)此次競(jìng)賽活動(dòng)學(xué)生得分的中位數(shù);(2)根據(jù)頻率分布直方圖,估計(jì)此次競(jìng)賽活動(dòng)得分的平均值.若對(duì)得分不低于平均值的同學(xué)進(jìn)行獎(jiǎng)勵(lì),請(qǐng)估計(jì)在參賽的名學(xué)生中有多少名學(xué)生獲獎(jiǎng)21.(12分)已知橢圓長(zhǎng)軸長(zhǎng)為4,A,B分別為左、右頂點(diǎn),P為橢圓上不同于A,B的動(dòng)點(diǎn),且點(diǎn)在橢圓上,其中e為橢圓的離心率(1)求橢圓的標(biāo)準(zhǔn)方程;(2)直線AP與直線(m為常數(shù))交于點(diǎn)Q,①當(dāng)時(shí),設(shè)直線OQ的斜率為,直線BP的斜率為.求證:為定值;②過Q與PB垂直的直線l是否過定點(diǎn)?如果是,請(qǐng)求出定點(diǎn)坐標(biāo);如果不是,請(qǐng)說明理由22.(10分)為了調(diào)查某蘋果園中蘋果的生長(zhǎng)情況,在蘋果園中隨機(jī)采摘了個(gè)蘋果.經(jīng)整理分析后發(fā)現(xiàn),蘋果的重量(單位:)近似服從正態(tài)分布,如圖所示,已知,.(1)若從蘋果園中隨機(jī)采摘個(gè)蘋果,求該蘋果的重量在內(nèi)的概率;(2)從這個(gè)蘋果中隨機(jī)挑出個(gè),這個(gè)蘋果的重量情況如下.重量范圍(單位:)個(gè)數(shù)為進(jìn)一步了解蘋果的甜度,從這個(gè)蘋果中隨機(jī)選出個(gè),記隨機(jī)選出的個(gè)蘋果中重量在內(nèi)的個(gè)數(shù)為,求隨機(jī)變量的分布列和數(shù)學(xué)期望.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】由題意知第8行的數(shù)就是二項(xiàng)式的展開式中各項(xiàng)的二項(xiàng)式系數(shù),可得第8行,第3個(gè)數(shù)是為,即可求解【詳解】解:由題意知第8行的數(shù)就是二項(xiàng)式的展開式中各項(xiàng)的二項(xiàng)式系數(shù),故第8行,第3個(gè)數(shù)是為故選:B2、C【解析】求出斜率,根據(jù)斜率與傾斜角的關(guān)系,即可求解.【詳解】解:,即,直線的斜率為,即直線的傾斜角為120°.故選:C.3、B【解析】根據(jù)題意,發(fā)現(xiàn)規(guī)律并將規(guī)律表達(dá)出來,第層有個(gè)球.【詳解】根據(jù)規(guī)律,可以得知:第一層有個(gè)球;第二層有個(gè)球;第三層有個(gè)球,則根據(jù)規(guī)律可知:第層有個(gè)球設(shè)第層的小球個(gè)數(shù)為,則有:故第十層球的個(gè)數(shù)為:故選:4、B【解析】先畫出可行域,由,得,作出直線,過點(diǎn)時(shí),取得最大值,求出點(diǎn)的坐標(biāo)代入目標(biāo)函數(shù)中可得答案【詳解】不等式組表示的可行域如圖所示,由,得,作出直線,過點(diǎn)時(shí),取得最大值,由,得,即,所以的最大值為,故選:B5、A【解析】取的中點(diǎn)為,的中點(diǎn)為,然后可得或其補(bǔ)角即為與所成角,然后在中求出答案即可.【詳解】取的中點(diǎn)為,的中點(diǎn)為,,,所以或其補(bǔ)角即為與所成角,設(shè),則,,在,,故選:A6、C【解析】設(shè),,根據(jù)雙曲線的定義可得,,在中由勾股定理列方程可得,在中由勾股定理可得關(guān)于,的方程,再由離心率公式即可求解.【詳解】設(shè),則,由雙曲線的定義可得:,,因?yàn)辄c(diǎn)在以為直徑的圓上,所以,所以,即,解得:,在中,,,,由可得,即,所以雙曲線離心率為,故選:C.第II卷(非選擇題7、A【解析】方程化為圓錐曲線(橢圓與雙曲線)標(biāo)準(zhǔn)方程的形式,然后由方程表示雙曲線可得不等關(guān)系【詳解】解:方程可化為,它表示雙曲線,則,解得.故選:A8、A【解析】先求出漸近線方程,進(jìn)而將點(diǎn)代入直線方程得到a,b關(guān)系,進(jìn)而求出離心率.【詳解】由題意,雙曲線的漸近線方程為:,而一條漸近線過點(diǎn),則,.故選:A.9、C【解析】利用雙曲線的定義求.【詳解】解:由雙曲線定義可知:解得或(舍)∴點(diǎn)到的距離為18,故選:C.10、B【解析】利用古典概型的概率求解.【詳解】解:點(diǎn)從點(diǎn)出發(fā),每次向右或向下跳一個(gè)單位長(zhǎng)度,跳3次,則樣本空間{(右,右,右),(右,右,下),(右,下,右),(下,右,右),(右,下,下),(下,右,下),(下,下,右),(下,下,下)},記“3次跳動(dòng)后,恰好是沿著饕餮紋的路線到達(dá)點(diǎn)B”為事件,則{(下,下,右)},由古典概型的概率公式可知故選:B11、B【解析】根據(jù)異面直線的定義找出角即為所求,再利用余弦定理解三角形即可得出.【詳解】分別取BC,PB的中點(diǎn)F,G,連接DF,F(xiàn)G,DG,如圖,因?yàn)镋為AD的中點(diǎn),四邊形ABCD是菱形,所以,所以(其補(bǔ)角)是異面直線PC與BE所成的角因?yàn)榈酌鍭BCD是邊長(zhǎng)為4菱形,且,,由余弦定理可知,所以,所以,所以異面直線PC與BE所成角的余弦值為,故選:B12、B【解析】求出焦點(diǎn),則可得出,即可求出漸近線方程.【詳解】由橢圓可得焦點(diǎn)為,則設(shè)雙曲線方程為,可得,則離心率,解得,則,所以漸近線方程為.故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、4x+3y-6=0【解析】直接求出兩直線l1:x﹣2y+4=0和l2:x+y﹣2=0的交點(diǎn)P的坐標(biāo),求出直線的斜率,然后求出所求直線方程【詳解】由方程組可得P(0,2)∵l⊥l3,∴kl=﹣,∴直線l的方程為y﹣2=﹣x,即4x+3y-6=0故答案為:4x+3y-6=014、【解析】由空間直角坐標(biāo)系中點(diǎn)到軸的距離為計(jì)算可得【詳解】解:空間直角坐標(biāo)系中,點(diǎn)到軸的距離為故答案為:15、【解析】根據(jù)圓錐曲線焦點(diǎn)在軸上且離心率小于1,確定a,b求解即可.【詳解】因?yàn)閳A錐曲線的焦點(diǎn)在軸上,離心率為,所以曲線為橢圓,且,所以,解得,故答案為:16、5【解析】考點(diǎn):函數(shù)導(dǎo)數(shù)與求值三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】(1)根據(jù)平面得到,結(jié)合得到證明。(2)建立空間直角坐標(biāo)系,計(jì)算各點(diǎn)坐標(biāo),計(jì)算平面的法向量,根據(jù)向量的夾角公式得到答案?!拘?詳解】由于平面,平面,所以,由于,又,所以平面【小問2詳解】?jī)蓛纱怪?,建立如圖所示空間直角坐標(biāo)系,,,,,,設(shè)平面的一個(gè)法向量為設(shè)平面的一個(gè)法向量為,由,得,故可取所以所以二面角的平面角的余弦值18、(1)(2)【解析】(1)根據(jù)導(dǎo)數(shù)的幾何意義求得函數(shù)在處的切線方程,再由有相同的切線這一條件即可求解;(2)先分離,再研究函數(shù)的單調(diào)性,最后運(yùn)用數(shù)形結(jié)合的思想求解即可.【小問1詳解】設(shè)公切線與的圖像切于點(diǎn),f'(x)=1+lnx?f由題意得:;【小問2詳解】當(dāng)時(shí),,①,①式可化為為,令令,,在上單調(diào)遞增,在上單調(diào)遞減.,當(dāng)時(shí),由題意知:19、(1);(2).【解析】(1)由,等式右邊可化為余弦定理形式,根據(jù)求角即可(2)由余弦定理結(jié)合均值不等式可求出的最大值,即可求出三角面積的最大值.【詳解】(1)由得:,即:.∴,又,∴.(2)由,當(dāng)且僅當(dāng)?shù)忍?hào)成立.得:..【點(diǎn)睛】本題主要考查了余弦定理,均值不等式,三角形面積公式,屬于中檔題.20、(1),中位數(shù)為;(2)得分的平均值為,估計(jì)有260名學(xué)生獲獎(jiǎng).【解析】(1)根據(jù)給定的頻率分布直方圖,利用各小矩形面積和為1計(jì)算得值;再由在中位數(shù)兩側(cè)所對(duì)小矩形面積相等即可計(jì)算得解.(2)由頻率分布直方圖求平均數(shù)的方法求出得分平均值即可估計(jì);再求出不低于平均分的頻率即可估計(jì)獲獎(jiǎng)人數(shù).【小問1詳解】由頻率分布直方圖知:,解得,設(shè)此次競(jìng)賽活動(dòng)學(xué)生得分的中位數(shù)為,因數(shù)據(jù)落在內(nèi)的頻率為0.4,落在內(nèi)的頻率為0.8,從而可得,由得:,所以,估計(jì)此次競(jìng)賽活動(dòng)學(xué)生得分的中位數(shù)為.【小問2詳解】由頻率分布直方圖及(1)知:數(shù)據(jù)落在,,,的頻率分別為,,此次競(jìng)賽活動(dòng)學(xué)生得分不低于82的頻率為,則,所以估計(jì)此次競(jìng)賽活動(dòng)得分的平均值為,在參賽的名學(xué)生中估計(jì)有260名學(xué)生獲獎(jiǎng).21、(1)(2)①證明見解析;②直線過定點(diǎn);【解析】(1)依題意得到方程組,解得,即可求出橢圓方程;(2)①由(1)可得,,設(shè),,表示出直線的方程,即可求出點(diǎn)坐標(biāo),從而得到、,即可求出;②在直線方程中令,即可得到的坐標(biāo),再求出直線的斜率,即可得到直線的方程,從而求出定點(diǎn)坐標(biāo);【小問1詳解】解:依題意可得,即,解得或(舍去),所以,所以橢圓方程為【小問2詳解】解:①由(1)可得,,設(shè),,則直線的方程為,令則,所以,,所以,又點(diǎn)在橢圓上,所以,即,所以,即為定值;②因?yàn)橹本€的方程為,令則,因?yàn)?,所以,所以?/p>
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 征收意愿協(xié)議書模板
- 繼承調(diào)解協(xié)議書范文
- 就業(yè)協(xié)議書遇到裁員
- 婚姻自行協(xié)商協(xié)議書
- 債務(wù)抵押協(xié)議書模板
- 民事賠償雙方協(xié)議書
- 離婚房租協(xié)議書范本
- 民企關(guān)閉賠償協(xié)議書
- 離婚年底分紅協(xié)議書
- 員工外出住宿協(xié)議書
- 2023學(xué)年杭州市余杭區(qū)七年級(jí)語文下學(xué)期期中考試卷附答案解析
- 《道路交通安全法》課件完整版
- 加快形成農(nóng)業(yè)新質(zhì)生產(chǎn)力
- 全國園地、林地、草地分等定級(jí)數(shù)據(jù)庫規(guī)范1123
- 護(hù)理中醫(yī)新技術(shù)新項(xiàng)目
- VDA-6.3-2016過程審核檢查表
- 【MOOC】普通地質(zhì)學(xué)-西南石油大學(xué) 中國大學(xué)慕課MOOC答案
- 《醫(yī)療廢物的處理》課件
- 教育培訓(xùn)合作分成協(xié)議書
- 2024年4月27日浙江省事業(yè)單位招聘《職業(yè)能力傾向測(cè)驗(yàn)》試題
- 煤礦防治水細(xì)則解讀
評(píng)論
0/150
提交評(píng)論