版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
廣東省廣雅中學、執(zhí)信、六中、深外四校2024屆數(shù)學高二上期末質(zhì)量檢測模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若點是函數(shù)圖象上的動點(其中的自然對數(shù)的底數(shù)),則到直線的距離最小值為()A. B.C. D.2.設等差數(shù)列前n項和是,若,則的通項公式可以是()A. B.C. D.3.在空間直角坐標系中,,,平面的一個法向量為,則平面與平面夾角的正弦值為()A. B.C. D.4.曲線與曲線()的()A.長軸長相等 B.短軸長相等C.離心率相等 D.焦距相等5.若,,,則a,b,c與1的大小關(guān)系是()A. B.C. D.6.如圖,直四棱柱的底面是菱形,,,M是的中點,則異面直線與所成角的余弦值為()A. B.C. D.7.已知雙曲線,則該雙曲線的實軸長為()A.1 B.2C. D.8.正方體的表面積為,則正方體外接球的表面積為(
)A. B.C. D.9.如圖,已知雙曲線的左右焦點分別為、,,是雙曲線右支上的一點,,直線與軸交于點,的內(nèi)切圓半徑為,則雙曲線的離心率是()A. B.C. D.10.已知數(shù)列滿足,則()A. B.1C.2 D.411.頂點在原點,關(guān)于軸對稱,并且經(jīng)過點的拋物線方程為()A. B.C. D.12.酒駕是嚴重危害交通安全的違法行為.根據(jù)國家有關(guān)規(guī)定:100血液中酒精含量在20~80之間為酒后駕車,80及以上為醉酒駕車.假設某駕駛員喝了一定量的酒后,其血液中的酒精含量上升到了1.2,且在停止喝酒以后,他血液中的酒精含量會以每小時20%的速度減少,若他想要在不違法的情況下駕駛汽車,則至少需經(jīng)過的小時數(shù)約為()(參考數(shù)據(jù):,)A.6 B.7C.8 D.9二、填空題:本題共4小題,每小題5分,共20分。13.已知數(shù)列的前n項和,則其通項公式______14.二進制數(shù)轉(zhuǎn)化成十進制數(shù)為______.15.若橢圓的一個焦點為,則p的值為______16.如圖,一個酒杯的內(nèi)壁的軸截面是拋物線的一部分,杯口寬cm,杯深8cm,稱為拋物線酒杯.①在杯口放一個表面積為的玻璃球,則球面上的點到杯底的最小距離為______cm;②在杯內(nèi)放入一個小的玻璃球,要使球觸及酒杯底部,則玻璃球的半徑的取值范圍為______(單位:cm)三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓過點,且離心率.(1)求橢圓C的標準方程;(2)若動點在橢圓上,且在第一象限內(nèi),點分別為橢圓的左、右頂點,直線分別與橢圓C交于點,過作直線的平行線與橢圓交于點,問直線是否過定點,若經(jīng)過定點,求出該定點的坐標;若不經(jīng)過定點,請說明理由.18.(12分)已知點P到點的距離比它到直線的距離小1.(1)求點P的軌跡方程;(2)點M,N在點P的軌跡上且位于x軸的兩側(cè),(其中O為坐標原點),求面積的最小值.19.(12分)已知圓,直線(1)判斷直線l與圓C的位置關(guān)系;(2)過點作圓C的切線,求切線的方程20.(12分)已知橢圓的離心率為,以橢圓兩個焦點與短軸的一個端點為頂點構(gòu)成的三角形的面積為(1)求橢圓C的標準方程;(2)過點作直線l與橢圓C相切于點Q,且直線l斜率大于0,過線段PQ的中點R作直線交橢圓于A,B兩點(點A,B不在y軸上),連結(jié)PA,PB,分別與橢圓交于點M,N,試判斷直線MN的斜率是否為定值;若是,請求出該定值21.(12分)如圖,ABCD是邊長為2的正方形,DE⊥平面ABCD,AF∥DE,DE=2AF=2(1)證明:AC∥平面BEF;(2)求點C到平面BEF的距離22.(10分)設橢圓的左焦點為,上頂點為.已知橢圓的短軸長為4,離心率為(1)求橢圓的方程;(2)設點在橢圓上,且異于橢圓的上、下頂點,點為直線與軸的交點,點且(為原點),求直線的斜率
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】設,,設與平行且與相切的直線與切于,由導數(shù)的幾何意義可求出點的坐標,則到直線的距離最小值為點到直線的距離,再求解即可.【詳解】解:設,,設與平行且與相切的直線與切于所以所以則到直線的距離為,即到直線的距離最小值為,故選:A2、D【解析】根據(jù)題意可得公差的范圍,再逐一分析各個選項即可得出答案.【詳解】解:設等差數(shù)列的公差為,由,得,所以,故AB錯誤;若,則,與題意矛盾,故C錯誤;若,則,符合題意.故選:D.3、A【解析】根據(jù)給定條件求出平面的法向量,再借助空間向量夾角公式即可計算作答.【詳解】設平面的法向量為,則,令,得,令平面與平面夾角為,則,,所以平面與平面夾角的正弦值為.故選:A4、D【解析】分別求出兩橢圓的長軸長、短軸長、離心率、焦距,即可判斷.【詳解】曲線表示焦點在軸上,長軸長為,短軸長為,離心率為,焦距為;曲線表示焦點在軸上,長軸長為,短軸長為,離心率為,焦距為.對照選項可知:焦距相等.故選:D.5、C【解析】根據(jù)條件構(gòu)造函數(shù),并求其導數(shù),判斷該函數(shù)的單調(diào)性,據(jù)此作出該函數(shù)的大致圖象,由圖象可判斷a,b,c與1的大小關(guān)系.【詳解】令,則當時,,當時,即函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,而,由可知,故作出函數(shù)大致圖象如圖:由圖象易知,,故選:C.6、D【解析】用向量分別表示,利用向量的夾角公式即可求解.【詳解】由題意可得,故選:D【點睛】本題主要考查用向量的夾角公式求異面直線所成的角,屬于基礎題.7、B【解析】根據(jù)給定的雙曲線方程直接計算即可作答.【詳解】雙曲線的實半軸長,所以該雙曲線的實軸長為2.故選:B8、B【解析】由正方體表面積求得棱長,再求得正方體的對角線長,即為外接球的直徑,從而可得球表面積【詳解】設正方體棱長為,由得,正方體對角線長,所以其外接球半徑為,球表面積為故選:B9、D【解析】根據(jù)給定條件結(jié)合直角三角形內(nèi)切圓半徑與邊長的關(guān)系求出雙曲線實半軸長a,再利用離心率公式計算作答.【詳解】依題意,,的內(nèi)切圓半徑,由直角三角形內(nèi)切圓性質(zhì)知:,由雙曲線對稱性知,,于是得,即,又雙曲線半焦距c=2,所以雙曲線的離心率.故選:D【點睛】結(jié)論點睛:二直角邊長為a,b,斜邊長為c的直角三角形內(nèi)切圓半徑.10、B【解析】根據(jù)遞推式以及迭代即可.【詳解】由,得,,,,,,.故選:B11、C【解析】根據(jù)題意,設拋物線的方程為,進而待定系數(shù)求解即可.【詳解】解:由題,設拋物線的方程為,因為在拋物線上,所以,解得,即所求拋物線方程為故選:C12、C【解析】根據(jù)題意列出不等式,利用指對數(shù)冪的互化和對數(shù)的運算公式即可解出不等式.【詳解】設該駕駛員至少需經(jīng)過x個小時才能駕駛汽車,則,所以,則,所以該駕駛員至少需經(jīng)過約8個小時才能駕駛汽車.故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】利用當時,,可求出此時的通項公式,驗證n=1時是否適合,可得答案.【詳解】當時,,當時,不適合上式,∴,故答案為:.14、13【解析】根據(jù)二進制數(shù)和十進制數(shù)之間的轉(zhuǎn)換方法即可求解.【詳解】.故答案為:13.15、3【解析】利用橢圓標準方程概念求解【詳解】因為焦點為,所以焦點在y軸上,所以故答案:316、①.②.【解析】根據(jù)題意,,進而得,,故最小距離為;進而建立坐標系,得拋物線方程為,當杯內(nèi)放入一個小的玻璃球,要使球觸及酒杯底部,此時設玻璃球軸截面所在圓的方程為,進而只需滿足拋物線上的點到圓心的距離大于等于半徑恒成立,再根據(jù)幾何關(guān)系求解即可.【詳解】因為杯口放一個表面積為的玻璃球,所以球的半徑為,又因為杯口寬cm,所以如圖1所示,有,所以,所以,所以,又因為杯深8cm,即故最小距離為如圖1所示,建立直角坐標系,易知,設拋物線的方程為,所以將代入得,故拋物線方程為,當杯內(nèi)放入一個小的玻璃球,要使球觸及酒杯底部,如圖2,設玻璃球軸截面所在圓的方程為,依題意,需滿足拋物線上的點到圓心的距離大于等于半徑恒成立,即,則有恒成立,解得,可得.所以玻璃球的半徑的取值范圍為.故答案為:;【點睛】本題考查拋物線的應用,考查數(shù)學建模能力,運算求解能力,是中檔題.本題第二問解題的關(guān)鍵在于設出球觸及酒杯底部的軸截面圓的方程,進而將問題轉(zhuǎn)化為拋物線上的點到圓心的距離大于等于半徑恒成立求解.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)過定點,【解析】(1)根據(jù)橢圓上的點及離心率求出a,b即可;(2)設點,設直線的方程為,聯(lián)立方程,得到根與系數(shù)的關(guān)系,利用條件化簡,結(jié)合橢圓方程,求出即可得解.【小問1詳解】由,有,又,所以,橢圓C的標準方程為.【小問2詳解】設點,設直線的方程為.如圖,聯(lián)立,消有:,韋達定理有:由,所以,又,所以又,所以.又所以有,把代入有:,解得或2,又直線不過右端點,所以,則,所以直線過定點.18、(1);(2).【解析】(1)根據(jù)給定條件可得點P到點的距離等于它到直線的距離,再由拋物線定義即可得解.(2)由(1)設出點M,N的坐標,再結(jié)合給定條件及三角形面積定理列式,借助均值不等式計算作答.【小問1詳解】因點P到點的距離比它到直線的距離小1,顯然點P與F在直線l同側(cè),于是得點P到點的距離等于它到直線的距離,則點P的軌跡是以F為焦點,直線為準線的拋物線,所以點P的軌跡方程是.【小問2詳解】由(1)設點,,且,因,則,解得,S,當且僅當,即時取“=”,所以面積的最小值為.【點睛】思路點睛:圓錐曲線中的幾何圖形面積范圍或最值問題,可以以直線的斜率、橫(縱)截距、圖形上動點的橫(縱)坐標為變量,建立函數(shù)關(guān)系求解作答.19、(1)相交.(2)或.【解析】(1)先判斷出直線恒過定點(2,1),由(2,1)在圓內(nèi),即可判斷;(2)分斜率存在與不存在兩種情況,利用幾何法求解.【小問1詳解】直線方程,即,則直線恒過定點(2,1).因為,則點(2,1)位于圓的內(nèi)部,故直線與圓相交.【小問2詳解】直線斜率不存在時,直線滿足題意;②直線斜率存在的時候,設直線方程為,即.因為直線與圓相切,所以圓心到直線的距離等于半徑,即,解得:,則直線方程為:.綜上可得,直線方程或.20、(1)(2)是,【解析】(1)根據(jù)離心率以及橢圓兩個焦點與短軸的一個端點為頂點構(gòu)成的三角形的面積列出等式即可求解;(2)設出相關(guān)直線與相關(guān)點的坐標,直線與橢圓聯(lián)立,點的坐標配合斜率公式化簡,再運用韋達理化簡可證明.【小問1詳解】由題意得,解得,則橢圓C的標準方程為【小問2詳解】設切線PQ的方程為,,,,,由,消去y得①,則,解得或(舍去),將代入①得,,解得,則,所以,又R為PQ中點,則,因為PA,PB斜率都存在,不妨設,,由①可得,所以,,同理,,則,又R,A,B三點共線,則,化簡得,所以.21、(1)證明見解析(2)【解析】(1)建立空間直角坐標系,進而求出平面BEF的法向量,然后證明線面平行;(2)算出在向量方向上的投影,進而求得答案.【小問1詳解】因為DE⊥平面ABCD,DA、DC平面ABCD,所以DE⊥DA,DE⊥DC,因為ABCD是正方形,所以DA⊥DC.以D為坐標原點,所在方向分別為軸的正方向建立空間直角坐標系,則A(2,0,0),C(0,2,0),B(2,2,0),E(0,0,2),F(xiàn)(2,0,1),所以,,設平面BEF的法向量,因為,所以-2x-2y+2z=0,-2y+z=0,令y=1,則=(1,1,2),又因為=(-2,2,0),所以,即,而
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024版工程車租賃合同模板范本
- 2025年度個人房產(chǎn)抵押擔保債務重組合同4篇
- 2025年度道路工程保險合同書3篇
- 2025年度汽車貸款逾期違約擔保合同4篇
- 2025年度個人財產(chǎn)抵押反擔保協(xié)議4篇
- 2025年紫金財產(chǎn)保險股份有限公司招聘筆試參考題庫含答案解析
- 2025年湖南藝創(chuàng)建筑工程有限公司招聘筆試參考題庫含答案解析
- 2025年度醫(yī)療健康產(chǎn)業(yè)貸款合同范本4篇
- 2025年廣西來賓市自來水有限公司招聘筆試參考題庫含答案解析
- 2025年南京航空航天大學后勤集團招聘筆試參考題庫含答案解析
- 第7課《中華民族一家親》(第一課時)(說課稿)2024-2025學年統(tǒng)編版道德與法治五年級上冊
- 2024年醫(yī)銷售藥銷售工作總結(jié)
- 急診科十大護理課件
- 山東省濟寧市2023-2024學年高一上學期1月期末物理試題(解析版)
- GB/T 44888-2024政務服務大廳智能化建設指南
- 2025年上半年河南鄭州滎陽市招聘第二批政務輔助人員211人筆試重點基礎提升(共500題)附帶答案詳解
- 山東省濟南市歷城區(qū)2024-2025學年七年級上學期期末數(shù)學模擬試題(無答案)
- 國家重點風景名勝區(qū)登山健身步道建設項目可行性研究報告
- 投資計劃書模板計劃方案
- 《接觸網(wǎng)施工》課件 3.4.2 隧道內(nèi)腕臂安裝
- 2024-2025學年九年級語文上學期第三次月考模擬卷(統(tǒng)編版)
評論
0/150
提交評論