吉林省白城市洮北區(qū)第一中學(xué)2023-2024學(xué)年高二上數(shù)學(xué)期末復(fù)習(xí)檢測模擬試題含解析_第1頁
吉林省白城市洮北區(qū)第一中學(xué)2023-2024學(xué)年高二上數(shù)學(xué)期末復(fù)習(xí)檢測模擬試題含解析_第2頁
吉林省白城市洮北區(qū)第一中學(xué)2023-2024學(xué)年高二上數(shù)學(xué)期末復(fù)習(xí)檢測模擬試題含解析_第3頁
吉林省白城市洮北區(qū)第一中學(xué)2023-2024學(xué)年高二上數(shù)學(xué)期末復(fù)習(xí)檢測模擬試題含解析_第4頁
吉林省白城市洮北區(qū)第一中學(xué)2023-2024學(xué)年高二上數(shù)學(xué)期末復(fù)習(xí)檢測模擬試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

吉林省白城市洮北區(qū)第一中學(xué)2023-2024學(xué)年高二上數(shù)學(xué)期末復(fù)習(xí)檢測模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知,,若直線上存在點P,滿足,則l的傾斜角的取值范圍是()A. B.C D.2.已知、是橢圓和雙曲線的公共焦點,是它們的一個公共點,且,橢圓的離心率為,雙曲線的離心率為,則()A.2 B.3C.4 D.53.兩圓和的位置關(guān)系是()A.內(nèi)切 B.外離C.外切 D.相交4.已知圓的方程為,直線:恒過定點,若一條光線從點射出,經(jīng)直線上一點反射后到達圓上的一點,則的最小值是()A.3 B.4C.5 D.65.一個公司有8名員工,其中6名員工的月工資分別為5200,5300,5500,6100,6500,6600,另兩名員工數(shù)據(jù)不清楚,那么8位員工月工資的中位數(shù)不可能是()A.5800 B.6000C.6200 D.64006.如圖,樣本和分別取自兩個不同的總體,它們的平均數(shù)分別為和,標(biāo)準(zhǔn)差分別為和,則()AB.C.D.7.如圖,在三棱柱中,平面,,,分別是,中點,在線段上,則與平面的位置關(guān)系是()A.垂直 B.平行C.相交但不垂直 D.要依點的位置而定8.已知不等式的解集為,關(guān)于x的不等式的解集為B,且,則實數(shù)a的取值范圍為()A. B.C. D.9.已知直線的一個方向向量,平面的一個法向量,若,則()A.1 B.C.3 D.10.設(shè),分別是雙曲線:的左、右焦點,過點作的一條漸近線的垂線,垂足為,,為坐標(biāo)原點,則雙曲線的離心率為()A. B.2C. D.11.從集合中任取兩個不同元素,則這兩個元素相差的概率為()A. B.C. D.12.已知隨機變量X,Y滿足,,且,則的值為()A.0.2 B.0.3C.0..5 D.0.6二、填空題:本題共4小題,每小題5分,共20分。13.已知曲線的焦距是10,曲線上的點到一個焦點的距離是2,則點到另一個焦點的距離為__________.14.據(jù)相關(guān)數(shù)據(jù)統(tǒng)計,部分省市的政府工作報告將“推進5G通信網(wǎng)絡(luò)建設(shè)”列入2020年的重點工作,2020年一月份全國共建基站3萬個如果從2月份起,以后的每個月比上一個月多建設(shè)0.2萬個,那么2020年這一年全國共有基站________萬個15.若,滿足約束條件,則的最小值為______.16.已知分別是平面α,β,γ的法向量,則α,β,γ三個平面中互相垂直的有________對三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,四棱錐P—ABCD中,底面ABCD是邊長為的正方形E,F(xiàn)分別為PC,BD的中點,側(cè)面PAD⊥底面ABCD,且PA=PD=AD.(Ⅰ)求證:EF//平面PAD;(Ⅱ)求三棱錐C—PBD的體積.18.(12分)2022北京冬奧會即將開始,北京某大學(xué)鼓勵學(xué)生積極參與志愿者的選拔.某學(xué)院有6名學(xué)生通過了志愿者選拔,其中4名男生,2名女生(1)若從中挑選2名志愿者,求入選者正好是一名男生和一名女生的概率;(2)若從6名志愿者中任選3人負(fù)責(zé)滑雪項目服務(wù)崗位,那么現(xiàn)將6人分為A、B兩組進行滑雪項目相關(guān)知識及志愿者服務(wù)知識競賽,共賽10局.A、B兩組分?jǐn)?shù)(單位:分)如下:A:125,141,140,137,122,114,119,139,121,142B:126,115,143,126,143,115,139,139,115,139從統(tǒng)計學(xué)角度看,應(yīng)選擇哪個組更合適?理由是什么?19.(12分)如圖,在四棱錐中,,,,,為中點,且平面.(1)求點到平面的距離;(2)線段上是否存在一點,使平面?如果不存在,請說明理由;如果存在,求的值.20.(12分)記是等差數(shù)列的前項和,若.(1)求數(shù)列的通項公式;(2)求使成立的的最小值.21.(12分)已知橢圓的右頂點為,上頂點為.離心率為,.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)若,是橢圓上異于長軸端點的兩點(斜率不為0),已知直線,且,垂足為,垂足為,若,且的面積是面積的5倍,求面積的最大值.22.(10分)已知橢圓的方程為,雙曲線的左、右焦點分別是的左、右頂點,而的左、右頂點分別是的左、右焦點(1)求雙曲線的方程;(2)若直線與雙曲線恒有兩個不同的交點和,且(其中為原點),求的取值范圍

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】根據(jù)題意,求得直線恒過的定點,數(shù)形結(jié)合只需求得線段與直線有交點時的斜率,結(jié)合斜率和傾斜角的關(guān)系即可求得結(jié)果.【詳解】對直線,變形為,故其恒過定點,若直線存在點P,滿足,只需直線與線段有交點即可.數(shù)形結(jié)合可知,當(dāng)直線過點時,其斜率取得最大值,此時,對應(yīng)傾斜角;當(dāng)直線過點時,其斜率取得最小值,此時,對應(yīng)傾斜角為.根據(jù)斜率和傾斜角的關(guān)系,要滿足題意,直線的傾斜角的范圍為:.故選:A.2、C【解析】依據(jù)橢圓和雙曲線定義和題給條件列方程組,得到關(guān)于橢圓的離心率和雙曲線的離心率的關(guān)系式,即可求得的值.【詳解】設(shè)橢圓的長軸長為,雙曲線的實軸長為,令,不妨設(shè)則,解之得代入,可得整理得,即,也就是故選:C3、A【解析】計算出圓心距,利用幾何法可判斷兩圓的位置關(guān)系.【詳解】圓的圓心坐標(biāo)為,半徑為,圓的圓心坐標(biāo)為,半徑為,兩圓圓心距為,則,因此,兩圓和內(nèi)切.故選:A.4、B【解析】求得定點,然后得到關(guān)于直線對稱點為,然后可得,計算即可.【詳解】直線可化為,令解得所以點的坐標(biāo)為.設(shè)點關(guān)于直線的對稱點為,則由,解得,所以點坐標(biāo)為.由線段垂直平分線的性質(zhì)可知,,所以(當(dāng)且僅當(dāng),,,四點共線時等號成立),所以的最小值為4.故選:B.5、D【解析】解:∵一個公司有8名員工,其中6名員工的月工資分別為5200,5300,5500,6100,6500,6600,∴當(dāng)另外兩名員工的工資都小于5300時,中位數(shù)為(5300+5500)÷2=5400,當(dāng)另外兩名員工的工資都大于5300時,中位數(shù)為(6100+6500)÷2=6300,∴8位員工月工資的中位數(shù)的取值區(qū)間為[5400,6300],∴8位員工月工資的中位數(shù)不可能是6400.本題選擇D選項.6、B【解析】直接根據(jù)圖表得到答案.【詳解】根據(jù)圖表:樣本數(shù)據(jù)均小于等于10,樣本數(shù)據(jù)均大于等于10,故;樣本數(shù)據(jù)波動大于樣本數(shù)據(jù),故.故選:B.7、B【解析】構(gòu)造三角形,先證∥平面,同理得∥平面,再證平面∥平面即可.【詳解】連接,,.因為在直三棱柱中,M,N分別是,AB的中點,所以∥.因為平面內(nèi),平面,所以∥平面.同理可得AM∥平面.又因為,平面,平面,所以平面∥平面.又因為P點在線段上,所以∥平面.故選:B.8、B【解析】解出不等式可得集合,由可得,然后可得在上恒成立,然后分離參數(shù)求解即可.【詳解】由得,,解得,因為,所以所以可得在上恒成立,即在上恒成立,故只需,,當(dāng)時,,故故選:B9、D【解析】由向量平行充要條件代入解之即可解決.【詳解】由,可知,則有,解之得故選:D10、D【解析】先求過右焦點且與漸近線垂直的直線方程,與漸近線方程聯(lián)立求點P的坐標(biāo),再用兩點間的距離公式,結(jié)合已知條件,得到關(guān)于a,c的關(guān)系式.【詳解】雙曲線的左右焦點分別為、,一條漸近線方程為,過與這條漸近線垂直的直線方程為,由,得到點P的坐標(biāo)為,又因為,所以,所以,所以.故選:D11、B【解析】一一列出所有基本事件,然后數(shù)出基本事件數(shù)和有利事件數(shù),代入古典概型的概率計算公式,即可得解.【詳解】解:從集合中任取兩個不同元素的取法有、、、、、共6種,其中滿足兩個元素相差的取法有、、共3種.故這兩個元素相差的概率為.故選:B.12、D【解析】利用正態(tài)分布的計算公式:,【詳解】且又故選:D二、填空題:本題共4小題,每小題5分,共20分。13、或10.【解析】對參數(shù)a進行討論,考慮曲線是橢圓和雙曲線的情況,進而結(jié)合橢圓與雙曲線的定義和性質(zhì)求得答案.【詳解】由題意,曲線的半焦距為5,若曲線是焦點在x軸上的橢圓,則a>16,所以,而橢圓上的點到一個焦點距離是2,則點到另一個焦點的距離為;若曲線是焦點在y軸上的橢圓,則0<a<16,所以,舍去;若曲線是雙曲線,則a<0,容易判斷雙曲線的焦點在y軸,所以,不妨設(shè)點P在雙曲線的上半支,上下焦點分別為,因為實半軸長為4,容易判斷點P到下焦點的距離的最小值為4+5=9>2,不合題意,所以點P到上焦點的距離為2,則它到下焦點的距離.故答案為:或10.14、2##【解析】由題意可知一月份到十二月份基站個數(shù)是以3為首項,0.2為公差的等差數(shù)列,根據(jù)等差數(shù)列求和公式可得答案.【詳解】一月份全國共建基站3萬個,2月全國共建基站萬個,3月全國共建基站萬個,,12月全國共建基站萬個,基站個數(shù)是以3為首項,0.2為公差的等差數(shù)列,2020年這一年全國共有基站萬個.故答案為:49.2.15、0【解析】作出約束條件對應(yīng)的可行域,當(dāng)目標(biāo)函數(shù)過點時,取得最小值,求解即可.【詳解】作出約束條件對應(yīng)的可行域,如下圖陰影部分,聯(lián)立,可得交點為,目標(biāo)函數(shù)可化為,當(dāng)目標(biāo)函數(shù)過點時,取得最小值,即.故答案為:0.【點睛】本題考查線性規(guī)劃,考查數(shù)形結(jié)合的數(shù)學(xué)思想的應(yīng)用,考查學(xué)生的計算求解能力,屬于基礎(chǔ)題.16、0【解析】計算每兩個向量的數(shù)量積,判斷該兩個向量是否垂直,可得答案.【詳解】因為,,.所以中任意兩個向量都不垂直,即α,β,γ中任意兩個平面都不垂直故答案為:0.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析(2)【解析】本試題主要是考查了線面平行的判定和三棱錐體積的求解的綜合問題.培養(yǎng)了同學(xué)們的推理論證能力和計算能力(1)根據(jù)已知的條件關(guān)鍵是分析出EF//PA,利用線面平行判定定理得到(2)根據(jù)上一問中的結(jié)論可知PM⊥平面ABCD.然后利用轉(zhuǎn)換頂點的思想求解棱錐的體積解:(Ⅰ)證明:連接AC,則F是AC的中點,E為PC的中點,故在CPA中,EF//PA,且PA平面PAD,EF平面PAD,∴EF//平面PAD(Ⅱ)取AD的中點M,連接PM,∵PA=PD,∴PM⊥AD,又平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,∴PM⊥平面ABCD.在直角PAM中,求得PM=,∴PM=18、(1)(2)答案見詳解【解析】(1):把4名男生和2名女生編號后用列舉法寫出任選2名的所有基本事件,同時可得出,兩人是一男一女的基本事件,計數(shù)后可計算概率;(2):求出兩組數(shù)據(jù)的均值和方差,比較可得【小問1詳解】設(shè)4名男生分別用A,B,C,D表示:2名女生分別用1,2表示.基本事件為:,,,,,,,,,,,,共15種,所以所求概率為;【小問2詳解】A組數(shù)據(jù)的平均數(shù),B組數(shù)據(jù)的平均數(shù),A組數(shù)據(jù)的方差,B組數(shù)據(jù)的方差,所以選擇A隊.理由:A、B兩隊平均數(shù)相同,且,A組成績波動小19、(1)(2)線段上存在一點,當(dāng)時,平面.【解析】(1)設(shè)點到平面的距離為,則由,由體積法可得答案.(2)由(1)連接,可得則從而平面,過點作交于點,連接,可證明平面平面,從而可得出答案.【小問1詳解】由,,為中點,則由平面,平面,則又,且,則平面又,則平面,且都在平面內(nèi)所以所以,取的中點,連接,則,所以,所以所以所以則設(shè)點到平面的距離為,則由即,即【小問2詳解】線段上是否存在一點,使平面.由(1)連接,則四邊形為平行四邊形,則過點作交于,則為中點,則為的中點,即又平面,則平面過點作交于點,連接,則,即又平面,所以平面又,所以平面平面又平面,所以平面所以線段上存在一點,當(dāng)時,平面.20、(1)(2)4【解析】(1)根據(jù)題意得,解方程得,進而得通項公式;(2)由題知,進而解不等式得或,再根據(jù)即可得答案.【小問1詳解】設(shè)等差數(shù)列的公差為,由得=0,由題意知,,解得,所以d=2所以.小問2詳解】解:由(1)可得,由可得,即,解得或,因為,所以,正整數(shù)的最小值為.21、(1)(2)面積的最大值為【解析】(1)由離心率為,,得,解得,,,進而可得答案(2)設(shè)直線的方程為,,,,,聯(lián)立直線與橢圓的方程,結(jié)合韋達定理可得,,由弦長公式可得,點到直線的距離,則,,由的面積是面積的5倍,解得,再計算的最大值,即可【小問1詳解】解:因為離心率為,,所以,解得,,,所以【小問2詳解】解:設(shè)直線的方程為,,,,,聯(lián)立,得,所以,,所以,點到直線的距離,所以,,因為的面積是面積的5倍,所以所以或,又因為,是橢圓上異于長軸端點的兩點,所以,所以,令,所以,因為在上單調(diào)遞增,所以,(當(dāng)時,取等號),所以面積的最大值為.22、(1);(2)【解析】(1)求出橢圓的焦點和頂點,即得雙曲線的頂點和焦點,從而易求得標(biāo)準(zhǔn)方程;(2)將代入,得由直線與雙曲線交于不同的兩點,得的取值范圍,設(shè),由韋達定理得則代入可求得的范圍【詳解】(1)設(shè)雙曲線的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論