江蘇省連云港市重點初中2024屆高二上數學期末考試試題含解析_第1頁
江蘇省連云港市重點初中2024屆高二上數學期末考試試題含解析_第2頁
江蘇省連云港市重點初中2024屆高二上數學期末考試試題含解析_第3頁
江蘇省連云港市重點初中2024屆高二上數學期末考試試題含解析_第4頁
江蘇省連云港市重點初中2024屆高二上數學期末考試試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

江蘇省連云港市重點初中2024屆高二上數學期末考試試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知等比數列的前n項和為,且,則()A.20 B.30C.40 D.502.下圖稱為弦圖,是我國古代三國時期趙爽為《周髀算經》作注時為證明勾股定理所繪制,我們新教材中利用該圖作為“()”的幾何解釋A.如果,,那么B.如果,那么C.對任意實數和,有,當且僅當時等號成立D.如果,那么3.若,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件4.已知長方體的底面ABCD是邊長為4的正方形,長方體的高為,則與對角面夾角的正弦值等于()A. B.C. D.5.如圖是拋物線拱形橋,當水面在時,拱頂離水面,水面寬,若水面上升,則水面寬是()(結果精確到)(參考數值:)A B.C. D.6.已知實數x,y滿足,則的取值范圍是()A. B.C. D.7.有一個圓錐形鉛垂,其底面直徑為10cm,母線長為15cm.P是鉛垂底面圓周上一點,則關于下列命題:①鉛垂的側面積為150cm2;②一只螞蟻從P點出發(fā)沿鉛垂側面爬行一周、最終又回到P點的最短路徑的長度為cm.其中正確的判斷是()A.①②都正確 B.①正確、②錯誤C.①錯誤、②正確8.已知不等式解集為,下列結論正確的是()A. B.C D.9.已知雙曲線離心率為2,過點的直線與雙曲線C交于A,B兩點,且點P恰好是弦的中點,則直線的方程為()A. B.C. D.10.設等差數列的前n項和為,若,,則()A.60 B.80C.90 D.10011.等軸雙曲線的中心在原點,焦點在軸上,與拋物線的準線交于兩點,且則的實軸長為A.1 B.2C.4 D.812.南宋數學家楊輝在《詳解九章算法》和《算法通變本末》中,提出了一些新的垛積公式,所討論的高階等差數到與一般的等差數列不同,前后兩項之差并不相等,但是逐項差數之差或者高次差成等差數列.如數列1,3,6,10,前后兩項之差組成新數列2,3,4,新數列2,3,4為等差數列、這樣的數列稱為二階等差數列.現有二階等差數列,其前7項分別為2,3,5,8,12,17,23則該數列的第100項為()A.4862 B.4962C.4852 D.4952二、填空題:本題共4小題,每小題5分,共20分。13.在空間直角坐標系中,點關于原點的對稱點為點,則___________.14.如圖,在長方體中,,,則直線與平面所成角的正弦值為__________.15.已知向量,,若向量與向量平行,則實數______16.數列滿足前項和,則數列的通項公式為_____________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)2022北京冬奧會即將開始,北京某大學鼓勵學生積極參與志愿者的選拔.某學院有6名學生通過了志愿者選拔,其中4名男生,2名女生(1)若從中挑選2名志愿者,求入選者正好是一名男生和一名女生的概率;(2)若從6名志愿者中任選3人負責滑雪項目服務崗位,那么現將6人分為A、B兩組進行滑雪項目相關知識及志愿者服務知識競賽,共賽10局.A、B兩組分數(單位:分)如下:A:125,141,140,137,122,114,119,139,121,142B:126,115,143,126,143,115,139,139,115,139從統(tǒng)計學角度看,應選擇哪個組更合適?理由是什么?18.(12分)已知函數.(1)若,求的極值;(2)若有兩個零點,求實數a取值范圍.19.(12分)城南公園種植了4棵棕櫚樹,各棵棕櫚樹成活與否是相互獨立的,成活率為p,設為成活棕櫚樹的株數,數學期望.(1)求p的值并寫出的分布列;(2)若有2棵或2棵以上的棕櫚樹未成活,則需要補種,求需要補種棕櫚樹的概率.20.(12分)某餐館將推出一種新品特色菜,為更精準確定最終售價,這種菜按以下單價各試吃1天,得到如下數據:(1)求銷量關于的線性回歸方程;(2)預計今后的銷售中,銷量與單價服從(1)中的線性回歸方程,已知每份特色菜的成本是15元,為了獲得最大利潤,該特色菜的單價應定為多少元?(附:,)21.(12分)已知函數的圖像在(為自然對數的底數)處取得極值.(1)求實數的值;(2)若不等式在恒成立,求的取值范圍.22.(10分)已知拋物線與直線相切.(1)求該拋物線的方程;(2)在軸的正半軸上,是否存在某個確定的點M,過該點的動直線與拋物線C交于A,B兩點,使得為定值.如果存在,求出點M的坐標;如果不存在,請說明理由.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】利用等比數列的前n項和公式即可求解.【詳解】設等比數列的首項為,公比為,則,由得,即,解得或(舍),且代入①得,則,所以.故選:B.2、C【解析】設圖中直角三角形邊長分別為a,b,則斜邊為,則可表示出陰影面積和正方形面積,根據圖象關系,可得即可得答案.【詳解】設圖中全等的直角三角形的邊長分別為a,b,則斜邊為,如圖所示:則四個直角三角形的面積為,正方形的面積為,由圖象可得,四個直角三角形面積之和小于等于正方形的面積,所以,當且僅當時等號成立,所以對任意實數和,有,當且僅當時等號成立.故選:C3、C【解析】利用函數在上單調遞減即可求解.【詳解】解:因為函數在上單調遞減,所以若,,則;反之若,,則.所以若,則“”是“”的充要條件,故選:C.4、C【解析】建立空間直角坐標系,結合空間向量的夾角坐標公式即可求出線面角的正弦值.【詳解】連接,建立如圖所示的空間直角坐標系∵底面是邊長為4的正方形,,∴,,,因為,,且,所以平面,∴,平面的法向量,∴與對角面所成角的正弦值為故選:C.5、C【解析】先建立直角坐標系,設拋物線方程為x2=my,將點坐標代入拋物線方程求出m,從而可得拋物線方程,再令y=代入拋物線方程求出x,即可得到答案【詳解】解:如圖建立直角坐標系,設拋物線方程為x2=my,由題意,將代入x2=my,得m=,所以拋物線的方程為x2=,令y=,解得,所以水面寬度為2.24×817.9m故選:C6、B【解析】實數,滿足,通過討論,得到其圖象是橢圓、雙曲線的一部分組成的圖形,借助圖象分析可得的取值就是圖象上一點到直線距離范圍的2倍,求出切線方程根據平行直線距離公式算出最小值,和最大值的極限值即可得出答案.【詳解】因為實數,滿足,所以當時,,其圖象是位于第一象限,焦點在軸上的雙曲線的一部分(含點),當時,其圖象是位于第四象限,焦點在軸上的橢圓的一部分,當時,其圖象不存在,當時,其圖象是位于第三象限,焦點在軸上的雙曲線的一部分,作出橢圓和雙曲線的圖象,其中圖象如下:任意一點到直線的距離所以,結合圖象可得的范圍就是圖象上一點到直線距離范圍的2倍,雙曲線,其中一條漸近線與直線平行,通過圖形可得當曲線上一點位于時,取得最小值,無最大值,小于兩平行線與之間的距離的倍,設與其圖像在第一象限相切于點,由因為或(舍去)所以直線與直線的距離為此時,所以的取值范圍是故選:B【點睛】三種距離公式:(1)兩點間的距離公式:平面上任意兩點間的距離公式為;(2)點到直線的距離公式:點到直線的距離;(3)兩平行直線間的距離公式:兩條平行直線與間的距離.7、C【解析】根據圓錐的側面展開圖為扇形,由扇形的面積公式計算即可判斷①,在展開圖中可知沿著爬行即為最短路徑,計算即可判斷②.【詳解】直徑為10cm,母線長為15cm.底面圓周長為.將其側面展開后得到扇形半徑為cm,弧長為,則扇形面積為,①錯誤.將其側面展開,則爬行最短距離為,由弧長公式得展開后扇形弧度數為,作,,又,,cm,②正確.故選:C8、C【解析】根據不等式解集為,得方程解為或,且,利用韋達定理即可將用表示,即可判斷各選項的正誤.【詳解】解:因為不等式解集為,所以方程的解為或,且,所以,所以,所以,故ABD錯誤;,故C正確.故選:C.9、C【解析】運用點差法即可求解【詳解】由已知得,又,,可得.則雙曲線C的方程為.設,,則兩式相減得,即.又因為點P恰好是弦的中點,所以,,所以直線的斜率為,所以直線的方程為,即.經檢驗滿足題意故選:C10、D【解析】由題設條件求出,從而可求.【詳解】設公差為,因為,,故,解得,故,故選:D.11、B【解析】設等軸雙曲線的方程為拋物線,拋物線準線方程為設等軸雙曲線與拋物線的準線的兩個交點,,則,將,代入,得等軸雙曲線的方程為的實軸長為故選12、D【解析】根據題意可得數列2,3,5,8,12,17,23,,滿足:,,從而利用累加法即可求出,進一步即可得到的值【詳解】2,3,5,8,12,17,23,后項減前項可得1,2,3,4,5,6,所以,所以.所以.故選:D二、填空題:本題共4小題,每小題5分,共20分。13、【解析】先利用關于原點對稱的點的坐標特征求出點,再利用空間兩點間的距離公式即可求.【詳解】因為B與關于原點對稱,故,所以.故答案為:.14、##【解析】過作,垂足為,則平面,則即為所求角,從而可得結果.【詳解】依題意,畫出圖形,如圖,過作,垂足為,可知點H為中點,由平面,可得,又所以平面,則即為所求角,因為,,所以,故答案為:.15、2【解析】先求出的坐標,進而根據空間向量平行的坐標運算求得答案.【詳解】由題意,,因為,所以存在實數使得.故答案為:2.16、【解析】由已知中前項和,結合,分別討論時與時的通項公式,并由時,的值不滿足時的通項公式,故要將數列的通項公式寫成分段函數的形式【詳解】∵數列前項和,∴當時,,又∵當時,,故,故答案為.【點睛】本題考查的知識點是等差數列的通項公式,其中正確理解由數列的前n項和Sn,求通項公式的方法和步驟是解答本題的關鍵三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)答案見詳解【解析】(1):把4名男生和2名女生編號后用列舉法寫出任選2名的所有基本事件,同時可得出,兩人是一男一女的基本事件,計數后可計算概率;(2):求出兩組數據的均值和方差,比較可得【小問1詳解】設4名男生分別用A,B,C,D表示:2名女生分別用1,2表示.基本事件為:,,,,,,,,,,,,共15種,所以所求概率為;【小問2詳解】A組數據的平均數,B組數據的平均數,A組數據的方差,B組數據的方差,所以選擇A隊.理由:A、B兩隊平均數相同,且,A組成績波動小18、(1)極小值為,無極大值(2)【解析】(1)利用導數求出,分別令、,進而得到函數的單調區(qū)間,即可求出極值;(2)利用導數討論、0時函數的單調性,進而得出函數的最小值小于0,解不等式即可.【小問1詳解】函數的定義域為,時,.令,解得,∵在上,,在上,,∴在上單調遞減,在上單調遞增,∴的極小值為,無極大值.【小問2詳解】,當時,,∴在上單調遞增,此時不可能有2個零點.當0時.令,得,∵在上,,在上,),∴在上單調遞減,在上單調遞增,∴的最小值為.∵有兩個零點,∴,即,∴.經驗證,若,則,且,又,∴有兩個零點.綜上,a的取值范圍是.19、(1),分布列見解析;(2).【解析】(1)根據二項分布知識即可求解;(2)將補種棕櫚樹的概率轉化為成活的概率,結合概率加法公式即可求解.【小問1詳解】由題意知,,又,所以,故未成活率為,由于所有可能的取值為0,1,2,3,4,所以,,,,,則的分布列為01234【小問2詳解】記“需要補種棕櫚樹”為事件A,由(1)得,,所以需要補種棕櫚樹的概率為.20、(1)(2)24【解析】(1)求出,的值,根據公式求出的值,代入公式即可求出回歸直線方程(2)根據(1)的結論,求出利潤,根據二次函數的性質,即可求解【詳解】解:(1)由題意得,,,,得,,所以關于的線性回歸方程為:.(2)由題意得,每份菜獲得的利潤,∴當時,取最大值,∴單價應定為24元,可獲得最大利潤.【點睛】本題考查回歸直線的求法與應用,著重考查計算化簡的能力,屬基礎題21、(1)(2)【解析】(1)由求得的值.(2)由分離常數,通過構造函數法,結

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論