2022-2023學(xué)年廣東六校聯(lián)盟高三下學(xué)期五校聯(lián)盟考試數(shù)學(xué)試題_第1頁
2022-2023學(xué)年廣東六校聯(lián)盟高三下學(xué)期五校聯(lián)盟考試數(shù)學(xué)試題_第2頁
2022-2023學(xué)年廣東六校聯(lián)盟高三下學(xué)期五校聯(lián)盟考試數(shù)學(xué)試題_第3頁
2022-2023學(xué)年廣東六校聯(lián)盟高三下學(xué)期五校聯(lián)盟考試數(shù)學(xué)試題_第4頁
2022-2023學(xué)年廣東六校聯(lián)盟高三下學(xué)期五校聯(lián)盟考試數(shù)學(xué)試題_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年廣東六校聯(lián)盟高三下學(xué)期五校聯(lián)盟考試數(shù)學(xué)試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.記的最大值和最小值分別為和.若平面向量、、,滿足,則()A. B.C. D.2.已知直線y=k(x+1)(k>0)與拋物線C相交于A,B兩點,F(xiàn)為C的焦點,若|FA|=2|FB|,則|FA|=()A.1 B.2 C.3 D.43.已知函數(shù),且的圖象經(jīng)過第一、二、四象限,則,,的大小關(guān)系為()A. B.C. D.4.若x,y滿足約束條件且的最大值為,則a的取值范圍是()A. B. C. D.5.在區(qū)間上隨機(jī)取一個數(shù),使得成立的概率為等差數(shù)列的公差,且,若,則的最小值為()A.8 B.9 C.10 D.116.復(fù)數(shù)的虛部是()A. B. C. D.7.函數(shù)的對稱軸不可能為()A. B. C. D.8.如圖所示,網(wǎng)格紙上小正方形的邊長為1,粗線畫出的是某幾何體的三視圖,則該幾何體的體積是()A. B. C. D.89.已知橢圓的焦點分別為,,其中焦點與拋物線的焦點重合,且橢圓與拋物線的兩個交點連線正好過點,則橢圓的離心率為()A. B. C. D.10.已知集合,,則=()A. B. C. D.11.已知復(fù)數(shù)(為虛數(shù)單位)在復(fù)平面內(nèi)對應(yīng)的點的坐標(biāo)是()A. B. C. D.12.已知雙曲線的左、右焦點分別為、,拋物線與雙曲線有相同的焦點.設(shè)為拋物線與雙曲線的一個交點,且,則雙曲線的離心率為()A.或 B.或 C.或 D.或二、填空題:本題共4小題,每小題5分,共20分。13.已知為矩形的對角線的交點,現(xiàn)從這5個點中任選3個點,則這3個點不共線的概率為________.14.已知數(shù)列的前項和且,設(shè),則的值等于_______________.15.將函數(shù)的圖象向右平移個單位長度后得到函數(shù)的圖象,則函數(shù)的最大值為______.16.設(shè)函數(shù),若在上的最大值為,則________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)某芯片公司為制定下一年的研發(fā)投入計劃,需了解年研發(fā)資金投入量x(單位:億元)對年銷售額y(單位:億元)的影響.該公司對歷史數(shù)據(jù)進(jìn)行對比分析,建立了兩個函數(shù)模型:①y=α+βx2,②y=eλx+t,其中現(xiàn)該公司收集了近12年的年研發(fā)資金投入量xi和年銷售額yi的數(shù)據(jù),i=1,2,?,12,并對這些數(shù)據(jù)作了初步處理,得到了右側(cè)的散點圖及一些統(tǒng)計量的值.令xyi=1i=1uv20667702004604.20i=1i=1i=1i=13125000215000.30814(1)設(shè)ui和yi的相關(guān)系數(shù)為r1,xi和(2)(i)根據(jù)(1)的選擇及表中數(shù)據(jù),建立y關(guān)于x的回歸方程(系數(shù)精確到0.01);(ii)若下一年銷售額y需達(dá)到90億元,預(yù)測下一年的研發(fā)資金投入量x是多少億元?附:①相關(guān)系數(shù)r=i=1n(xi-x②參考數(shù)據(jù):308=4×77,90≈9.4868,e18.(12分)一個工廠在某年里連續(xù)10個月每月產(chǎn)品的總成本(萬元)與該月產(chǎn)量(萬件)之間有如下一組數(shù)據(jù):1.081.121.191.281.361.481.591.681.801.872.252.372.402.552.642.752.923.033.143.26(1)通過畫散點圖,發(fā)現(xiàn)可用線性回歸模型擬合與的關(guān)系,請用相關(guān)系數(shù)加以說明;(2)①建立月總成本與月產(chǎn)量之間的回歸方程;②通過建立的關(guān)于的回歸方程,估計某月產(chǎn)量為1.98萬件時,產(chǎn)品的總成本為多少萬元?(均精確到0.001)附注:①參考數(shù)據(jù):,,,,.②參考公式:相關(guān)系數(shù),,.19.(12分)已知函數(shù).(1)當(dāng)(為自然對數(shù)的底數(shù))時,求函數(shù)的極值;(2)為的導(dǎo)函數(shù),當(dāng),時,求證:.20.(12分)已知函數(shù)(I)若討論的單調(diào)性;(Ⅱ)若,且對于函數(shù)的圖象上兩點,存在,使得函數(shù)的圖象在處的切線.求證:.21.(12分)選修4-4:坐標(biāo)系與參數(shù)方程在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)).以原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,且曲線的極坐標(biāo)方程為.(1)寫出直線的普通方程與曲線的直角坐標(biāo)方程;(2)設(shè)直線上的定點在曲線外且其到上的點的最短距離為,試求點的坐標(biāo).22.(10分)為迎接2022年冬奧會,北京市組織中學(xué)生開展冰雪運(yùn)動的培訓(xùn)活動,并在培訓(xùn)結(jié)束后對學(xué)生進(jìn)行了考核.記表示學(xué)生的考核成績,并規(guī)定為考核優(yōu)秀.為了了解本次培訓(xùn)活動的效果,在參加培訓(xùn)的學(xué)生中隨機(jī)抽取了30名學(xué)生的考核成績,并作成如下莖葉圖:(Ⅰ)從參加培訓(xùn)的學(xué)生中隨機(jī)選取1人,請根據(jù)圖中數(shù)據(jù),估計這名學(xué)生考核優(yōu)秀的概率;(Ⅱ)從圖中考核成績滿足的學(xué)生中任取2人,求至少有一人考核優(yōu)秀的概率;(Ⅲ)記表示學(xué)生的考核成績在區(qū)間的概率,根據(jù)以往培訓(xùn)數(shù)據(jù),規(guī)定當(dāng)時培訓(xùn)有效.請根據(jù)圖中數(shù)據(jù),判斷此次中學(xué)生冰雪培訓(xùn)活動是否有效,并說明理由.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】

設(shè)為、的夾角,根據(jù)題意求得,然后建立平面直角坐標(biāo)系,設(shè),,,根據(jù)平面向量數(shù)量積的坐標(biāo)運(yùn)算得出點的軌跡方程,將和轉(zhuǎn)化為圓上的點到定點距離,利用數(shù)形結(jié)合思想可得出結(jié)果.【詳解】由已知可得,則,,,建立平面直角坐標(biāo)系,設(shè),,,由,可得,即,化簡得點的軌跡方程為,則,則轉(zhuǎn)化為圓上的點與點的距離,,,,轉(zhuǎn)化為圓上的點與點的距離,,.故選:A.【點睛】本題考查和向量與差向量模最值的求解,將向量坐標(biāo)化,將問題轉(zhuǎn)化為圓上的點到定點距離的最值問題是解答的關(guān)鍵,考查化歸與轉(zhuǎn)化思想與數(shù)形結(jié)合思想的應(yīng)用,屬于中等題.2、C【解析】

方法一:設(shè),利用拋物線的定義判斷出是的中點,結(jié)合等腰三角形的性質(zhì)求得點的橫坐標(biāo),根據(jù)拋物線的定義求得,進(jìn)而求得.方法二:設(shè)出兩點的橫坐標(biāo),由拋物線的定義,結(jié)合求得的關(guān)系式,聯(lián)立直線的方程和拋物線方程,寫出韋達(dá)定理,由此求得,進(jìn)而求得.【詳解】方法一:由題意得拋物線的準(zhǔn)線方程為,直線恒過定點,過分別作于,于,連接,由,則,所以點為的中點,又點是的中點,則,所以,又所以由等腰三角形三線合一得點的橫坐標(biāo)為,所以,所以.方法二:拋物線的準(zhǔn)線方程為,直線由題意設(shè)兩點橫坐標(biāo)分別為,則由拋物線定義得又①②由①②得.故選:C【點睛】本小題主要考查拋物線的定義,考查直線和拋物線的位置關(guān)系,屬于中檔題.3、C【解析】

根據(jù)題意,得,,則為減函數(shù),從而得出函數(shù)的單調(diào)性,可比較和,而,比較,即可比較.【詳解】因為,且的圖象經(jīng)過第一、二、四象限,所以,,所以函數(shù)為減函數(shù),函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,又因為,所以,又,,則|,即,所以.故選:C.【點睛】本題考查利用函數(shù)的單調(diào)性比較大小,還考查化簡能力和轉(zhuǎn)化思想.4、A【解析】

畫出約束條件的可行域,利用目標(biāo)函數(shù)的最值,判斷a的范圍即可.【詳解】作出約束條件表示的可行域,如圖所示.因為的最大值為,所以在點處取得最大值,則,即.故選:A【點睛】本題主要考查線性規(guī)劃的應(yīng)用,利用z的幾何意義,通過數(shù)形結(jié)合是解決本題的關(guān)鍵.5、D【解析】

由題意,本題符合幾何概型,只要求出區(qū)間的長度以及使不等式成立的的范圍區(qū)間長度,利用幾何概型公式可得概率,即等差數(shù)列的公差,利用條件,求得,從而求得,解不等式求得結(jié)果.【詳解】由題意,本題符合幾何概型,區(qū)間長度為6,使得成立的的范圍為,區(qū)間長度為2,故使得成立的概率為,又,,,令,則有,故的最小值為11,故選:D.【點睛】該題考查的是有關(guān)幾何概型與等差數(shù)列的綜合題,涉及到的知識點有長度型幾何概型概率公式,等差數(shù)列的通項公式,屬于基礎(chǔ)題目.6、C【解析】因為,所以的虛部是,故選C.7、D【解析】

由條件利用余弦函數(shù)的圖象的對稱性,得出結(jié)論.【詳解】對于函數(shù),令,解得,當(dāng)時,函數(shù)的對稱軸為,,.故選:D.【點睛】本題主要考查余弦函數(shù)的圖象的對稱性,屬于基礎(chǔ)題.8、A【解析】

由三視圖還原出原幾何體,得出幾何體的結(jié)構(gòu)特征,然后計算體積.【詳解】由三視圖知原幾何體是一個四棱錐,四棱錐底面是邊長為2的正方形,高為2,直觀圖如圖所示,.故選:A.【點睛】本題考查三視圖,考查棱錐的體積公式,掌握基本幾何體的三視圖是解題關(guān)鍵.9、B【解析】

根據(jù)題意可得易知,且,解方程可得,再利用即可求解.【詳解】易知,且故有,則故選:B【點睛】本題考查了橢圓的幾何性質(zhì)、拋物線的幾何性質(zhì),考查了學(xué)生的計算能力,屬于中檔題10、C【解析】

計算,,再計算交集得到答案.【詳解】,,故.故選:.【點睛】本題考查了交集運(yùn)算,意在考查學(xué)生的計算能力.11、A【解析】

直接利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡,求得的坐標(biāo)得出答案.【詳解】解:,在復(fù)平面內(nèi)對應(yīng)的點的坐標(biāo)是.故選:A.【點睛】本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查復(fù)數(shù)的代數(shù)表示法及其幾何意義,屬于基礎(chǔ)題.12、D【解析】

設(shè),,根據(jù)和拋物線性質(zhì)得出,再根據(jù)雙曲線性質(zhì)得出,,最后根據(jù)余弦定理列方程得出、間的關(guān)系,從而可得出離心率.【詳解】過分別向軸和拋物線的準(zhǔn)線作垂線,垂足分別為、,不妨設(shè),,則,為雙曲線上的點,則,即,得,,又,在中,由余弦定理可得,整理得,即,,解得或.故選:D.【點睛】本題考查了雙曲線離心率的求解,涉及雙曲線和拋物線的簡單性質(zhì),考查運(yùn)算求解能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

基本事件總數(shù),這3個點共線的情況有兩種和,由此能求出這3個點不共線的概率.【詳解】解:為矩形的對角線的交點,現(xiàn)從,,,,這5個點中任選3個點,基本事件總數(shù),這3個點共線的情況有兩種和,這3個點不共線的概率為.故答案為:.【點睛】本題考查概率的求法,考查對立事件概率計算公式等基礎(chǔ)知識,考查運(yùn)算求解能力,屬于基礎(chǔ)題.14、7【解析】

根據(jù)題意,當(dāng)時,,可得,進(jìn)而得數(shù)列為等比數(shù)列,再計算可得,進(jìn)而可得結(jié)論.【詳解】由題意,當(dāng)時,,又,解得,當(dāng)時,由,所以,,即,故數(shù)列是以為首項,為公比的等比數(shù)列,故,又,,所以,.故答案為:.【點睛】本題考查了數(shù)列遞推關(guān)系、函數(shù)求值,考查了推理能力與計算能力,計算得是解決本題的關(guān)鍵,屬于中檔題.15、【解析】

由三角函數(shù)圖象相位變換后表達(dá)函數(shù)解析式,再利用三角恒等變換與輔助角公式整理的表達(dá)式,進(jìn)而由三角函數(shù)值域求得最大值.【詳解】將函數(shù)的圖象向右平移個單位長度后得到函數(shù)的圖象,則所以,當(dāng)函數(shù)最大,最大值為故答案為:【點睛】本題考查表示三角函數(shù)圖象平移后圖象的解析式,還考查了利用三角恒等變換化簡函數(shù)式并求最值,屬于簡單題.16、【解析】

求出函數(shù)的導(dǎo)數(shù),由在上,可得在上單調(diào)遞增,則函數(shù)最大值為,即可求出參數(shù)的值.【詳解】解:定義域為,在上單調(diào)遞增,故在上的最大值為故答案為:【點睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性與最值,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)模型y=eλx+t的擬合程度更好;(2)(i)v=0.02x+3.84【解析】

(1)由相關(guān)系數(shù)求出兩個系數(shù),比較大小可得;(2)(i)先建立U額R0關(guān)于x的線性回歸方程,從而得出y(ii)把y=90代入(i)中的回歸方程可得x值.【詳解】本小題主要考查回歸分析等基礎(chǔ)知識,考查數(shù)據(jù)處理能力、運(yùn)算求解能力、抽象概括能力及應(yīng)用意識,考查統(tǒng)計與概率思想、分類與整合思想,考查數(shù)學(xué)抽象、數(shù)學(xué)運(yùn)算、數(shù)學(xué)建模、數(shù)據(jù)分析等核心素養(yǎng),體現(xiàn)基礎(chǔ)性、綜合性與應(yīng)用性.解:(1)r1r2則r1<r(2)(i)先建立U額R0由y=eλx+t,得lny=t+λx由于λ=i=1t=所以U額R0關(guān)于x所以lny=0.02x+3.84(ii)下一年銷售額y需達(dá)到90億元,即y=90,代入y=e0.02x+3.84又e4.4998≈90,所以所以x≈4.4998-3.84所以預(yù)測下一年的研發(fā)資金投入量約是32.99億元【點睛】本小題主要考查拋物線的定義、拋物線的標(biāo)準(zhǔn)方程、直線與拋物線的位置關(guān)系、導(dǎo)數(shù)幾何意義等基礎(chǔ)知識,考查推理論證能力、運(yùn)算求解能力,考查函數(shù)與方程思想、化歸與轉(zhuǎn)化思想、數(shù)形結(jié)合思想等,考查數(shù)學(xué)運(yùn)算、直觀想象、邏輯推理等核心素養(yǎng),體現(xiàn)基礎(chǔ)性、綜合性與應(yīng)用性18、(1)見解析;(2)①②3.386(萬元)【解析】

(1)利用代入數(shù)值,求出后即可得解;(2)①計算出、后,利用求出后即可得解;②把代入線性回歸方程,計算即可得解.【詳解】(1)由已知條件得,,∴,說明與正相關(guān),且相關(guān)性很強(qiáng).(2)①由已知求得,,所以,所求回歸直線方程為.②當(dāng)時,(萬元),此時產(chǎn)品的總成本約為3.386萬元.【點睛】本題考查了相關(guān)系數(shù)的應(yīng)用以及線性回歸方程的求解和應(yīng)用,考查了計算能力,屬于中檔題.19、(1)極大值,極小值;(2)詳見解析.【解析】

首先確定函數(shù)的定義域和;(1)當(dāng)時,根據(jù)的正負(fù)可確定單調(diào)性,進(jìn)而確定極值點,代入可求得極值;(2)通過分析法可將問題轉(zhuǎn)化為證明,設(shè),令,利用導(dǎo)數(shù)可證得,進(jìn)而得到結(jié)論.【詳解】由題意得:定義域為,,(1)當(dāng)時,,當(dāng)和時,;當(dāng)時,,在,上單調(diào)遞增,在上單調(diào)遞減,極大值為,極小值為.(2)要證:,即證:,即證:,化簡可得:.,,即證:,設(shè),令,則,在上單調(diào)遞增,,則由,從而有:.【點睛】本題考查導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用,涉及到函數(shù)極值的求解、利用導(dǎo)數(shù)證明不等式的問題;本題不等式證明的關(guān)鍵是能夠?qū)⒍鄠€變量的問題轉(zhuǎn)化為一個變量的問題,通過構(gòu)造函數(shù)的方式將問題轉(zhuǎn)化為函數(shù)最值的求解問題.20、(1)見解析(2)見證明【解析】

(1)對函數(shù)求導(dǎo),分別討論,以及,即可得出結(jié)果;(2)根據(jù)題意,由導(dǎo)數(shù)幾何意義得到,將證明轉(zhuǎn)化為證明即可,再令,設(shè),用導(dǎo)數(shù)方法判斷出的單調(diào)性,進(jìn)而可得出結(jié)論成立.【詳解】(1)解:易得,函數(shù)的定義域為,,令,得或.①當(dāng)時,時,,函數(shù)單調(diào)遞減;時,,函數(shù)單調(diào)遞增.此時,的減區(qū)間為,增區(qū)間為.②當(dāng)時,時,,函數(shù)單調(diào)遞減;或時,,函數(shù)單調(diào)遞增.此時,的減區(qū)間為,增區(qū)間為,.③當(dāng)時,時,,函數(shù)單調(diào)遞增;此時,的減區(qū)間為.綜上,當(dāng)時,的減區(qū)間為,增區(qū)間為:當(dāng)時,的減區(qū)間為,增區(qū)間為.;當(dāng)時,增區(qū)間為.(2)證明:由題意及導(dǎo)數(shù)的幾何意義,得由(1)中得.易知,導(dǎo)函數(shù)在上為增函數(shù),所以,要證,只要證,即,即證.因為,不妨令,則.所以,所以在上為增函數(shù),所以,即,所以,即,即.故有(得證).【點睛】本題主要考查導(dǎo)數(shù)的應(yīng)用,通常需要對函數(shù)求導(dǎo),利用導(dǎo)數(shù)的方法研究

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論