江西省南城縣第一中學(xué)2024屆高二數(shù)學(xué)第一學(xué)期期末經(jīng)典模擬試題含解析_第1頁(yè)
江西省南城縣第一中學(xué)2024屆高二數(shù)學(xué)第一學(xué)期期末經(jīng)典模擬試題含解析_第2頁(yè)
江西省南城縣第一中學(xué)2024屆高二數(shù)學(xué)第一學(xué)期期末經(jīng)典模擬試題含解析_第3頁(yè)
江西省南城縣第一中學(xué)2024屆高二數(shù)學(xué)第一學(xué)期期末經(jīng)典模擬試題含解析_第4頁(yè)
江西省南城縣第一中學(xué)2024屆高二數(shù)學(xué)第一學(xué)期期末經(jīng)典模擬試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩9頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

江西省南城縣第一中學(xué)2024屆高二數(shù)學(xué)第一學(xué)期期末經(jīng)典模擬試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)。回答非選擇題時(shí),將答案寫(xiě)在答題卡上,寫(xiě)在本試卷上無(wú)效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知直線與平行,則的值為()A. B.C. D.2.若圓C:上有到的距離為1的點(diǎn),則實(shí)數(shù)m的取值范圍為()A. B.C. D.3.已知圓與直線,則圓上到直線的距離為1的點(diǎn)的個(gè)數(shù)是()A.1 B.2C.3 D.44.已知雙曲線C:-=1的焦距為10,點(diǎn)P(2,1)在C的漸近線上,則C的方程為A.-=1 B.-=1C.-=1 D.-=15.已知關(guān)于的不等式的解集為,則不等式的解集為()A.或 B.C.或 D.6.圓上到直線的距離為的點(diǎn)共有A.個(gè) B.個(gè)C.個(gè) D.個(gè)7.已知向量,,且與互相垂直,則()A. B.C. D.8.設(shè)等差數(shù)列的前n項(xiàng)和為,,公差為d,,,則下列結(jié)論不正確的是()A. B.當(dāng)時(shí),取得最大值C. D.使得成立的最大自然數(shù)n是159.已知等差數(shù)列的前項(xiàng)和為,,公差,.若取得最大值,則的值為()A.6或7 B.7或8C.8或9 D.9或1010.已知數(shù)列滿足:,,則()A. B.C. D.11.若關(guān)于一元二次不等式的解集為,則實(shí)數(shù)的取值范圍是()A. B.C. D.12.函數(shù)的定義域?yàn)?,其?dǎo)函數(shù)的圖像如圖所示,則函數(shù)極值點(diǎn)的個(gè)數(shù)為()A.2 B.3C.4 D.5二、填空題:本題共4小題,每小題5分,共20分。13.若函數(shù)在區(qū)間上單調(diào)遞減,則實(shí)數(shù)的取值范圍是____________.14.已知橢圓的左、右焦點(diǎn)分別為,若橢圓上的點(diǎn)P滿足軸,,則該橢圓的離心率為_(kāi)__________15.命題“,”的否定是____________.16.若拋物線:上的一點(diǎn)到它的焦點(diǎn)的距離為3,則__.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知拋物線的焦點(diǎn)為F,傾斜角為45°的直線m過(guò)點(diǎn)F,若此拋物線上存在3個(gè)不同的點(diǎn)到m的距離為,求此拋物線的準(zhǔn)線方程18.(12分)已知拋物線上的點(diǎn)到焦點(diǎn)的距離為6(1)求拋物線的方程;(2)設(shè)為拋物線的焦點(diǎn),直線與拋物線交于,兩點(diǎn),求的面積19.(12分)已知橢圓的左、右焦點(diǎn)分別為,若焦距為4,點(diǎn)P是橢圓上與左、右頂點(diǎn)不重合的點(diǎn),且的面積最大值.(1)求橢圓的方程;(2)過(guò)點(diǎn)的直線交橢圓于點(diǎn)、,且滿足(為坐標(biāo)原點(diǎn)),求直線的方程.20.(12分)某快遞公司收取快遞費(fèi)用的標(biāo)準(zhǔn)是:重量不超過(guò)的包裹收費(fèi)10元;重量超過(guò)的包裹,除收費(fèi)10元之外,超過(guò)的部分,每超出(不足,按計(jì)算)需要再收費(fèi)5元.該公司近60天每天攬件數(shù)量的頻率分布直方圖如下圖所示(同一組數(shù)據(jù)用該區(qū)間的中點(diǎn)值作代表).(1)求這60天每天包裹數(shù)量的平均值和中位數(shù);(2)該公司從收取的每件快遞的費(fèi)用中抽取5元作為前臺(tái)工作人員的工資和公司利潤(rùn),剩余的作為其他費(fèi)用.已知公司前臺(tái)有工作人員3人,每人每天工資100元,以樣本估計(jì)總體,試估計(jì)該公司每天的利潤(rùn)有多少元?(3)小明打算將四件禮物隨機(jī)分成兩個(gè)包裹寄出,且每個(gè)包裹重量都不超過(guò),求他支付的快遞費(fèi)為45元的概率.21.(12分)已知拋物線C:,直線l經(jīng)過(guò)點(diǎn),且與拋物線C交于M,N兩點(diǎn),其中.(1)若,且,求點(diǎn)M的坐標(biāo);(2)是否存在正數(shù)m,使得以MN為直徑的圓經(jīng)過(guò)坐標(biāo)原點(diǎn)O,若存在,請(qǐng)求出正數(shù)m,若不存在,請(qǐng)說(shuō)明理由.22.(10分)已知橢圓的兩焦點(diǎn)為、,P為橢圓上一點(diǎn),且(1)求此橢圓的方程;(2)若點(diǎn)P在第二象限,,求的面積

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】由兩直線平行可得,即可求出答案.【詳解】直線與平行故選:C.2、C【解析】利用圓與圓的位置關(guān)系進(jìn)行求解即可.【詳解】將圓C的方程化為標(biāo)準(zhǔn)方程得,所以.因?yàn)閳AC上有到的距離為1的點(diǎn),所以圓C與圓:有公共點(diǎn),所以因?yàn)椋?,解得,故選:C3、B【解析】根據(jù)圓心到直線的距離即可判斷.【詳解】由得,則圓的圓心為,半徑,由,則圓心到直線的距離,∵,∴在圓上到直線距離為1的點(diǎn)有兩個(gè).故選:B.4、A【解析】由題意得,雙曲線的焦距為,即,又雙曲線的漸近線方程為,點(diǎn)在的漸近線上,所以,聯(lián)立方程組可得,所以雙曲線的方程為考點(diǎn):雙曲線的標(biāo)準(zhǔn)方程及簡(jiǎn)單的幾何性質(zhì)5、A【解析】由一元二次不等式的解集可得且,確定a、b、c間的數(shù)量關(guān)系,再求的解集.【詳解】由題意知:且,得,從而可化為,等價(jià)于,解得或.故選:A.6、C【解析】求出圓的圓心和半徑,比較圓心到直線的距離和圓的半徑的關(guān)系即可得解.【詳解】圓可變?yōu)?,圓心為,半徑為,圓心到直線的距離,圓上到直線的距離為的點(diǎn)共有個(gè).故選:C.【點(diǎn)睛】本題考查了圓與直線的位置關(guān)系,考查了學(xué)生合理轉(zhuǎn)化的能力,屬于基礎(chǔ)題.7、D【解析】根據(jù)垂直關(guān)系可得,由向量坐標(biāo)運(yùn)算可構(gòu)造方程求得結(jié)果.【詳解】,,又與互相垂直,,解得:.故選:D.8、D【解析】根據(jù)等差數(shù)列等差中項(xiàng)的性質(zhì),求和公式及單調(diào)性分別判斷.【詳解】因?yàn)?,,所以,則,故A正確;當(dāng)時(shí),取得最大值,故B正確;,故C正確;因?yàn)?,,,所以使得成立的最大自然?shù)是,故D錯(cuò)誤.故選:D9、B【解析】根據(jù)題意可知等差數(shù)列是,單調(diào)遞減數(shù)列,其中,由此可知,據(jù)此即可求出結(jié)果.【詳解】在等差數(shù)列中,所以,所以,即,又等差數(shù)列中,公差,所以等差數(shù)列是單調(diào)遞減數(shù)列,所以,所以等差數(shù)列的前項(xiàng)和為取得最大值,則的值為7或8.故選:B.10、A【解析】由a1=3,,利用遞推思想,求出數(shù)列的前11項(xiàng),推導(dǎo)出數(shù)列{an}從第6項(xiàng)起是周期為3的周期數(shù)列,由此能求出a2022【詳解】解:∵數(shù)列{an}滿足:a1=3,,∴a2=3a1+1=10,5,a4=3a3+1=16,a58,4,a72,a81,a9=3a8+1=4,a102,a111,∴數(shù)列{an}從第6項(xiàng)起是周期為3的周期數(shù)列,∵2022=5+672×3+1,∴a2022=a6=4故選:A11、B【解析】結(jié)合判別式求得的取值范圍.【詳解】由于關(guān)于的一元二次不等式的解集為,所以,解得,所以實(shí)數(shù)的取值范圍是.故選:B12、C【解析】根據(jù)給定的導(dǎo)函數(shù)的圖象,結(jié)合函數(shù)的極值的定義,即可求解.【詳解】如圖所示,設(shè)導(dǎo)函數(shù)的圖象與軸的交點(diǎn)分別為,根據(jù)函數(shù)的極值的定義可知在該點(diǎn)處的左右兩側(cè)的導(dǎo)數(shù)符號(hào)相反,可得為函數(shù)的極大值點(diǎn),為函數(shù)的極小值點(diǎn),所以函數(shù)極值點(diǎn)的個(gè)數(shù)為4個(gè).故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】求解定義域,由導(dǎo)函數(shù)小于0得到遞減區(qū)間,進(jìn)而得到不等式組,求出實(shí)數(shù)的取值范圍.【詳解】顯然,且,由,以及考慮定義域x>0,解得:.在區(qū)間,上單調(diào)遞減,∴,解得:.故答案為:14、【解析】由題意分析為直角三角形,得到關(guān)于a、c的齊次式,即可求出離心率.【詳解】設(shè),則.由橢圓的定義可知:,所以.所以因軸,所以為直角三角形,由勾股定理得:,即,即,所以離心率.故答案為:15、,【解析】根據(jù)全稱命題量詞的否定即可得出結(jié)果.【詳解】命題“”的否定是“,”故答案為:16、【解析】通過(guò)拋物線的定義列式求解【詳解】根據(jù)拋物線的定義知,所以.故答案為:三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、【解析】設(shè)出直線m的方程,利用方程組聯(lián)立、一元二次方程根的判別式求出與直線m平行的拋物線的切線方程,結(jié)合平行線間距離公式進(jìn)行求解即可.【詳解】拋物線的焦點(diǎn)坐標(biāo)為:,設(shè)直線m為,設(shè)為與拋物線相切,聯(lián)立直線與拋物線方程,化簡(jiǎn)整理可得,,則,解得,且,故兩平行線間的距離,解得,故所求的準(zhǔn)線方程為18、(1)(2)【解析】(1)根據(jù)焦半徑公式可求,從而可求拋物線的方程.(2)求出的長(zhǎng)度后可求的面積.【小問(wèn)1詳解】因?yàn)?,所以,故拋物線方程為:.【小問(wèn)2詳解】設(shè),且,由可得,故或,故,故,故,而到直線的距離為,故的面積為19、(1)(2)或【解析】(1)根據(jù)焦距求出,利用面積最大值,得到求出,從而得到,求出橢圓方程;(2)分直線斜率存在和斜率不存在,結(jié)合題干條件得到,進(jìn)而求出直線方程.【小問(wèn)1詳解】∵∴,又的面積最大值,則,所以,從而,,故橢圓的方程為:;【小問(wèn)2詳解】①當(dāng)直線的斜率存在時(shí),設(shè),代入③整理得,設(shè)、,則,所以,點(diǎn)到直線的距離因?yàn)?,即,又由,得,所以?而,,即,解得:,此時(shí);②當(dāng)直線的斜率不存在時(shí),,直線交橢圓于點(diǎn)、.也有,經(jīng)檢驗(yàn),上述直線均滿足,綜上:直線的方程為或.【點(diǎn)睛】圓錐曲線中,有關(guān)向量的題目,要結(jié)合條件選擇不同的方法,一般思路有轉(zhuǎn)化為三角形面積,或者線段的比,或者由向量得到共線等.20、(1)公司每天包裹的平均數(shù)和中位數(shù)都為260件.(2)該公司平均每天的利潤(rùn)有1000元.(3).【解析】(1)對(duì)于平均數(shù),運(yùn)用平均數(shù)的公式即可;由于中位數(shù)將頻率分布直方圖分成面積相等的兩部分,先確定中位數(shù)位于哪一組,然后建立關(guān)于中位數(shù)的方程即可求出.(2)利用每天的總收入減去工資的支出,即可得到公司每天的利潤(rùn).(3)該為古典概型,根據(jù)題意分別確定總的基本事件個(gè)數(shù),以及事件“快遞費(fèi)為45元”包括的基本事件個(gè)數(shù),即可求出概率.【詳解】(1)每天包裹數(shù)量的平均數(shù)為;或:由圖可知每天攬50、150、250、350、450件的天數(shù)分別為6、6、30、12、6,所以每天包裹數(shù)量的平均數(shù)為設(shè)中位數(shù)為x,易知,則,解得x=260.所以公司每天包裹的平均數(shù)和中位數(shù)都為260件.(2)由(1)可知平均每天的攬件數(shù)為260,利潤(rùn)為(元),所以該公司平均每天的利潤(rùn)有1000元(3)設(shè)四件禮物分為二個(gè)包裹E、F,因?yàn)槎Y物A、C、D共重(千克),禮物B、C、D共重(千克),都超過(guò)5千克,故E和F的重量數(shù)分別有,,,,共5種,對(duì)應(yīng)的快遞費(fèi)分別為45、45、50,45,50(單位:元)故所求概率為.【點(diǎn)睛】主要考查了頻率分布直方圖的平均數(shù),中位數(shù)求解,以及古典概型,屬于中檔題.21、(1)或(2)存在,【解析】(1)確定點(diǎn)為拋物線的焦點(diǎn),則根據(jù)拋物線的焦半徑公式,結(jié)合拋物線方程,求得答案;(2)假設(shè)存在正數(shù)m,使得以MN為直徑的圓經(jīng)過(guò)坐標(biāo)原點(diǎn)O,可推得,由此可設(shè)直線方程,聯(lián)立拋物線方程,利用根與系數(shù)的關(guān)系,代入到中,可得結(jié)論.【小問(wèn)1詳解】依題意得為的焦點(diǎn),故,解得,故,則∴點(diǎn)的坐標(biāo)或;【小問(wèn)2詳解】假設(shè)存在正數(shù),使得以為直徑

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論