




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
山東省莒縣第二中學(xué)2024屆高二數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.傾斜角為120°,在x軸上截距為-1的直線方程是()A.x-y+1=0 B.x-y-=0C.x+y-=0 D.x+y+=02.離心率為,長軸長為6的橢圓的標(biāo)準(zhǔn)方程是A. B.或C. D.或3.在區(qū)間內(nèi)隨機(jī)地取出兩個(gè)數(shù),則兩數(shù)之和小于的概率是()A. B.C. D.4.某校開展研學(xué)活動(dòng)時(shí)進(jìn)行勞動(dòng)技能比賽,通過初選,選出共6名同學(xué)進(jìn)行決賽,決出第1名到第6名的名次(沒有并列名次),和去詢問成績,回答者對(duì)說“很遺?,你和都末拿到冠軍;對(duì)說“你當(dāng)然不是最差的”.試從這個(gè)回答中分析這6人的名次排列順序可能出現(xiàn)的結(jié)果有()A.720種 B.600種C.480種 D.384種5.拋物線上點(diǎn)的橫坐標(biāo)為4,則到拋物線焦點(diǎn)的距離等于()A.12 B.10C.8 D.66.在等比數(shù)列{}中,,,則=()A.9 B.12C.±9 D.±127.設(shè)雙曲線與橢圓:有公共焦點(diǎn),.若雙曲線經(jīng)過點(diǎn),設(shè)為雙曲線與橢圓的一個(gè)交點(diǎn),則的余弦值為()A. B.C. D.8.已知曲線,則曲線W上的點(diǎn)到原點(diǎn)距離的最小值是()A. B.C. D.9.雙曲線的焦點(diǎn)坐標(biāo)是()A. B.C. D.10.已知a,b為正實(shí)數(shù),且,則的最小值為()A.1 B.2C.4 D.611.已知,是雙曲線C:(,)的兩個(gè)焦點(diǎn),過點(diǎn)與x軸垂直的直線與雙曲線C交于A、B兩點(diǎn),若是等腰直角三角形,則雙曲線C的離心率為()A. B.C. D.12.已知雙曲線的離心率為2,則C的漸近線方程為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知集合,,將中的所有元素按從大到小的順序排列構(gòu)成一個(gè)數(shù)列,則數(shù)列的前n項(xiàng)和的最大值為___________.14.若兩定點(diǎn)A,B的距離為3,動(dòng)點(diǎn)M滿足,則M點(diǎn)的軌跡圍成區(qū)域的面積為_________15.如圖,在四面體中,BA,BC,BD兩兩垂直,,,則二面角的大小為______16.已知平面和兩條不同的直線,則下列判斷中正確的序號(hào)是___________.①若,則;②若,則;③若,則;④若,則;三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標(biāo)系xOy中,已知橢圓的左、右焦點(diǎn)分別是,,離心率,請(qǐng)?jiān)購南旅鎯蓚€(gè)條件中選擇一個(gè)作為已知條件,完成下面的問題:①橢圓C過點(diǎn);②以點(diǎn)為圓心,3為半徑的圓與以點(diǎn)為圓心,1為半徑的圓相交,且交點(diǎn)在橢圓C上(只能從①②中選擇一個(gè)作為已知)(1)求橢圓C的方程;(2)已知過點(diǎn)的直線l交橢圓C于M,N兩點(diǎn),點(diǎn)N關(guān)于x軸的對(duì)稱點(diǎn)為,且,M,三點(diǎn)構(gòu)成一個(gè)三角形,求證:直線過定點(diǎn),并求面積的最大值.18.(12分)已知函數(shù)(1)討論函數(shù)的單調(diào)性;(2)若,證明:19.(12分)已知在等差數(shù)列中,,(1)求數(shù)列的通項(xiàng)公式;(2)若的前n項(xiàng)和為,且,,求數(shù)列的前n項(xiàng)和20.(12分)如圖,在長方體中,底面是邊長為1的正方形,側(cè)棱長為2,且動(dòng)點(diǎn)P在線段AC上運(yùn)動(dòng)(1)若Q為的中點(diǎn),求點(diǎn)Q到平面的距離;(2)設(shè)直線與平面所成角為,求的取值范圍21.(12分)設(shè)p:關(guān)于x的不等式有解,q:.(1)若p為真命題,求實(shí)數(shù)m的取值范圍;(2)若為假命題,為真命題,求實(shí)數(shù)m的取值范圍.22.(10分)如圖,在四棱錐中,,,,,為中點(diǎn),且平面.(1)求點(diǎn)到平面的距離;(2)線段上是否存在一點(diǎn),使平面?如果不存在,請(qǐng)說明理由;如果存在,求的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】由傾斜角求出斜率,寫出斜截式方程,再化為一般式【詳解】由于傾斜角為120°,故斜率k=-.又直線過點(diǎn)(-1,0),所以方程為y=-(x+1),即x+y+=0.故選:D.【點(diǎn)睛】本題考查直線方程的斜截式,屬于基礎(chǔ)題2、B【解析】試題解析:當(dāng)焦點(diǎn)在x軸上:當(dāng)焦點(diǎn)在y軸上:考點(diǎn):本題考查橢圓的標(biāo)準(zhǔn)方程點(diǎn)評(píng):解決本題的關(guān)鍵是焦點(diǎn)位置不同方程不同3、C【解析】利用幾何概型的面積型,確定兩數(shù)之和小于的區(qū)域,進(jìn)而根據(jù)面積比求概率.【詳解】由題意知:若兩個(gè)數(shù)分別為,則,如上圖示,陰影部分即為,∴兩數(shù)之和小于的概率.故選:C4、D【解析】不是第一名且不是最后一名,的限制最多,先排有4種情況,再排,也有4種情況,余下的問題是4個(gè)元素在4個(gè)位置全排列,根據(jù)分步計(jì)數(shù)原理求解即可【詳解】由題意,不是第一名且不是最后一名,的限制最多,故先排,有4種情況,再排,也有4種情況,余下4人有種情況,利用分步相乘計(jì)數(shù)原理知有種情況故選:D.5、C【解析】根據(jù)焦半徑公式即可求出【詳解】因?yàn)?,所以,所以故選:C6、D【解析】根據(jù)題意,設(shè)等比數(shù)列的公比為,由等比數(shù)列的性質(zhì)求出,再求出【詳解】根據(jù)題意,設(shè)等比數(shù)列的公比為,若,,則,變形可得,則,故選:7、A【解析】求出雙曲線方程,根據(jù)橢圓和雙曲線的第一定義求出的長度,從而根據(jù)余弦定理求出的余弦值【詳解】由題得,雙曲線中,所以,雙曲線方程為:,假設(shè)在第一象限,根據(jù)橢圓和雙曲線的定義可得:,解得:,,所以根據(jù)余弦定理,故選:A8、A【解析】化簡方程,得到,求出的范圍,作出曲線的圖形,通過圖象觀察,即可得到原點(diǎn)距離的最小值詳解】解:即為,兩邊平方,可得,即有,則作出曲線的圖形,如下:則點(diǎn)與點(diǎn)或的距離最小,且為故選:A9、B【解析】根據(jù)雙曲線的方程,求得,結(jié)合雙曲線的幾何性質(zhì),即可求解.【詳解】由題意,雙曲線,可得,所以,且雙曲線的焦點(diǎn)再軸上,所以雙曲線的焦點(diǎn)坐標(biāo)為.故選:B.10、D【解析】利用基本不等式“1”的妙用求最值.【詳解】因?yàn)閍,b為正實(shí)數(shù),且,所以.當(dāng)且僅當(dāng),即時(shí)取等號(hào).故選:D11、B【解析】根據(jù)等腰直角三角形的性質(zhì),結(jié)合雙曲線的離心率公式進(jìn)行求解即可.【詳解】由題意不妨設(shè),,當(dāng)時(shí),由,不妨設(shè),因?yàn)槭堑妊苯侨切危杂?,或舍去,故選:B12、A【解析】根據(jù)離心率及a,b,c的關(guān)系,可求得,代入即可得答案.【詳解】因?yàn)殡x心率,所以,所以,,則,所以C的漸近線方程為.故選:A二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由題意設(shè),,根據(jù)可得,從而,即可得出答案.【詳解】設(shè),由,得,由,得中的元素滿足,即,可得所以,由,所以所以,要使得數(shù)列的前n項(xiàng)和的最大值,即求出數(shù)列中所以滿足的項(xiàng)的和即可.即,得,則所以數(shù)列的前n項(xiàng)和的最大值為故答案為:147214、【解析】建立如圖直角坐標(biāo)系,設(shè)點(diǎn),根據(jù)題意和兩點(diǎn)坐標(biāo)求距離公式可得,結(jié)合圓的面積公式計(jì)算即可.【詳解】以點(diǎn)A為坐標(biāo)原點(diǎn),射線AB為x軸的非負(fù)半軸建立直角坐標(biāo)系,如圖,設(shè)點(diǎn),則,由,化簡并整理得:,于是得點(diǎn)M軌跡是以點(diǎn)為圓心,2為半徑的圓,其面積為,所以M點(diǎn)的軌跡圍成區(qū)域的面積為.故答案為:15、【解析】取的中點(diǎn)為,連接,由面面角的定義得出二面角的平面角為,再結(jié)合等腰直角三角形的性質(zhì)得出二面角的大小.【詳解】取的中點(diǎn)為,連接,因?yàn)?,所以二面角的平面角為,因?yàn)?,,所以為等腰直角三角形,即二面角的大小?故答案為:16、②④【解析】根據(jù)直線與直線,直線與平面的位置關(guān)系依次判斷每個(gè)選項(xiàng)得到答案.詳解】若,則或,異面,或,相交,①錯(cuò)誤;若,則,②正確;若,則或或與相交,③錯(cuò)誤;若,則,④正確;故答案為:②④.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)證明見解析,【解析】(1)若選①,則由題意可得,解方程組求出,從而可求得橢圓方程,若選②,,再結(jié)合離心率和求出,從而可求得橢圓方程,(2)由題意設(shè)直線MN的方程為,設(shè),,,將直線方程代入橢圓方程中,消去,再利用根與系數(shù)的關(guān)系,表示出直線的方程,令,求出,結(jié)合前面的式子化簡可得線過的定點(diǎn),表示出的面積,利用基本不等式可求得其最大值【小問1詳解】若選①:由題意知,∴.所以橢圓C的方程為.若選②:設(shè)圓與圓相交于點(diǎn)Q.由題意知:.又因?yàn)辄c(diǎn)Q在橢圓上,所以,∴.又因?yàn)?,∴,?所以橢圓C的方程為.【小問2詳解】由題易知直線MN斜率存在且不為0,因?yàn)椋试O(shè)直線MN方程為,設(shè),,,∴,∴,,因?yàn)辄c(diǎn)N關(guān)于x軸對(duì)稱點(diǎn)為,所以,所以直線方程為,令,∴.又,∴.所以直線過定點(diǎn),∴.當(dāng)且僅當(dāng),即時(shí),取等號(hào).所以面積的最大值為.18、(1)當(dāng)時(shí),在上單調(diào)遞增;當(dāng)時(shí),在上單調(diào)遞減,在上單調(diào)遞增;(2)見詳解【解析】(1)對(duì)函數(shù)進(jìn)行求導(dǎo),然后根據(jù)參數(shù)進(jìn)行分類討論;(2)構(gòu)造函數(shù),求函數(shù)的最小值即可證出.【詳解】(1)的定義域?yàn)椋?當(dāng)時(shí),在上恒成立,所以在上單調(diào)遞增;當(dāng)時(shí),時(shí),;時(shí),,所以在上單調(diào)遞減,在上單調(diào)遞增.綜上所述,當(dāng)時(shí),在上單調(diào)遞增;當(dāng)時(shí),在上單調(diào)遞減,在上單調(diào)遞增.(2)當(dāng)時(shí),.令,,則.,令,.恒成立,所以在上單調(diào)遞增.因?yàn)?,,所以存在唯一的,使得,?①當(dāng)時(shí),,即,所以在上單調(diào)遞減;當(dāng)時(shí),,即,所以在上單調(diào)遞增.所以,,②方法一:把①代入②得,.設(shè),.則恒成立,所以在上單調(diào)遞減,所以.因?yàn)?,所以,即,所以,所以時(shí),.方法二:設(shè),.則,所以在上單調(diào)遞增,所以,所以.因?yàn)椋?,所以,所以時(shí),.【點(diǎn)睛】不等式證明問題是近年高考命題的熱點(diǎn),利用導(dǎo)數(shù)證明不等式的方法主要有兩個(gè):(1)不等式兩邊作差構(gòu)造函數(shù),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,求出函數(shù)最值即可;(2)觀察不等式的特點(diǎn),結(jié)合已解答問題把要證的不等式變形,并運(yùn)用已證結(jié)論先行放縮,再化簡或者進(jìn)一步利用導(dǎo)數(shù)證明.19、(1);(2).【解析】(1)根據(jù)給定條件求出數(shù)列的公差即可求解作答.(2)由已知條件求出數(shù)列的通項(xiàng),再利用錯(cuò)位相減法計(jì)算作答.【小問1詳解】等差數(shù)列中,,解得,則公差,所以數(shù)列的通項(xiàng)公式為:.【小問2詳解】的前n項(xiàng)和為,,,則當(dāng)時(shí),,于是得,即,而,即,,因此,數(shù)列是首項(xiàng)為2,公比為2的等比數(shù)列,,由(1)知,,則,因此,,,所以數(shù)列的前n項(xiàng)和.20、(1)1(2)【解析】(1)以AB,AD,為x,y,z軸正向建立直角坐標(biāo)系,利用空間向量法求出平面的法向量,結(jié)合點(diǎn)到平面的距離的向量求法計(jì)算即可;(2)設(shè)點(diǎn),,進(jìn)而得出的坐標(biāo),利用向量的數(shù)量積即可列出線面角正弦值的表達(dá)式,結(jié)合二次函數(shù)的性質(zhì)即可得出結(jié)果.【小問1詳解】由題意,分別以AB,AD,為x,y,z軸正向建立直角坐標(biāo)系,于是,,,,,設(shè)平面法向量所以,解得,,令得,,設(shè)點(diǎn)Q到平面的距離為d,【小問2詳解】由(1)可知,平面的法向量,由P點(diǎn)在線段AC上運(yùn)動(dòng)可設(shè)點(diǎn),于是,,所以,的取值范圍是21、(1)(2)【解析】根據(jù)題意,解出p和q里面m的范圍即可求解﹒其中有解,則≥0﹒【小問1詳解】p為真命題時(shí),,解得,所以m的取值范圍是;【小問2詳解】q為真命題時(shí),即,解得,所以q為假命題時(shí),或,由(1)知,p為假時(shí),因?yàn)闉榧倜},為真命題,所以p,q為一真一假,當(dāng)p真q假時(shí),且“或”,解得;當(dāng)p假q真時(shí),,解得;綜上:m的取值范圍是22、(1)(2)線段上存在一點(diǎn),當(dāng)時(shí),平面.【解析】(1)設(shè)點(diǎn)到平面的距離為,則由,由體積法可得答案.(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 網(wǎng)絡(luò)協(xié)議分析與應(yīng)用試題及答案
- 西方政治制度下的經(jīng)濟(jì)發(fā)展政策試題及答案
- 項(xiàng)目管理的工具與方法應(yīng)用實(shí)例試題及答案
- 政治輿論影響研究試題及答案
- 深度透視2025年軟件設(shè)計(jì)師考試試題及答案
- 2025年羥丙纖維素合作協(xié)議書
- 軟件設(shè)計(jì)師考試關(guān)鍵考點(diǎn)及試題答案
- 公共服務(wù)政策的效果研究試題及答案
- 創(chuàng)建共享經(jīng)濟(jì)的公共政策機(jī)制試題及答案
- 學(xué)習(xí)進(jìn)階軟件設(shè)計(jì)師考試試題及答案
- 江蘇省南通市海安市2024-2025學(xué)年高二下學(xué)期4月期中生物試題(原卷版+解析版)
- 供配電技術(shù)試題及答案
- 2024年青海大學(xué)附屬醫(yī)院招聘筆試真題
- 深圳市城市規(guī)劃標(biāo)準(zhǔn)與準(zhǔn)則2024版
- 《低空經(jīng)濟(jì)及其產(chǎn)業(yè)發(fā)展-把握機(jī)會(huì)、布局未來》課件
- 我們的節(jié)日-端午
- 四川省2024年中考物理試題13套附解析答案
- 第1單元班級(jí)衛(wèi)生大掃除(教案)-三年級(jí)上冊(cè)勞動(dòng)魯科版
- 肱骨外上髁炎的健康宣教
- 交警執(zhí)勤執(zhí)法安全課件
- 內(nèi)墻涂料施工方案
評(píng)論
0/150
提交評(píng)論