




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
之江教育評價(jià)2024屆高二數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知等比數(shù)列的首項(xiàng)為1,公比為2,則=()A. B.C. D.2.函數(shù)y=x3+x2-x+1在區(qū)間[-2,1]上的最小值為()A. B.2C.-1 D.-43.函數(shù)在上的最大值是A. B.C. D.4.設(shè)函數(shù)是定義在上的函數(shù)的導(dǎo)函數(shù),有,若,,則,,的大小關(guān)系是()A. B.C. D.5.橢圓的左、右焦點(diǎn)分別為、,上存在兩點(diǎn)、滿足,,則的離心率為()A. B.C. D.6.已知是拋物線上的一個(gè)動(dòng)點(diǎn),是圓上的一個(gè)動(dòng)點(diǎn),是一個(gè)定點(diǎn),則的最小值為A. B.C. D.7.《周髀算經(jīng)》中有這樣一個(gè)問題,從冬至之日起,小寒、大寒、立春、雨水、驚蟄、春分、清明、谷雨、立夏、小滿、芒種這十二個(gè)節(jié)氣日影長依次成等差數(shù)列,若冬至、大寒、雨水的日影長的和為36.3尺,小寒、驚蟄、立夏的日影長的和為18.3尺,則冬至的日影長為()A4尺 B.8.5尺C.16.1尺 D.18.1尺8.執(zhí)行如圖所示的程序框圖,則輸出S的值是()A. B.C. D.9.已知直線和互相垂直,則實(shí)數(shù)的值為()A. B.C.或 D.10.已知橢圓的短軸長和焦距相等,則a的值為()A.1 B.C. D.11.直線的傾斜角為()A. B.C. D.12.函數(shù)的圖像大致是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知點(diǎn)F是拋物線的焦點(diǎn),點(diǎn),點(diǎn)P為拋物線上的任意一點(diǎn),則的最小值為_________.14.已知雙曲線與橢圓有公共的左、右焦點(diǎn)分別為,,以線段為直徑的圓與雙曲線C及其漸近線在第一象限內(nèi)分別交于M,N兩點(diǎn),且線段的中點(diǎn)在另一條漸近線上,則的面積為___________.15.若無論實(shí)數(shù)取何值,直線與圓恒有兩個(gè)公共點(diǎn),則實(shí)數(shù)的取值范圍為___________.16.直線與圓交于A、B兩點(diǎn),當(dāng)弦AB的長度最短時(shí),則三角形ABC的面積為________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,直四棱柱中,底面是邊長為的正方形,點(diǎn)在棱上.(1)求證:;(2)從條件①、條件②、條件③這三個(gè)條件中選擇兩個(gè)作已知,使得平面,并給出證明.條件①:為的中點(diǎn);條件②:平面;條件③:.(3)在(2)的條件下,求平面與平面夾角的余弦值.18.(12分)設(shè)函數(shù),其中,為自然對數(shù)的底數(shù).(1)討論單調(diào)性;(2)證明:當(dāng)時(shí),.19.(12分)點(diǎn)與定點(diǎn)的距離和它到直線:的距離的比是常數(shù).(1)求動(dòng)點(diǎn)的軌跡的方程;(2)點(diǎn)在(1)中軌跡上運(yùn)動(dòng)軸,為垂足,點(diǎn)滿足,求點(diǎn)軌跡方程.20.(12分)已知拋物線的焦點(diǎn)為F,其中P為E的準(zhǔn)線上一點(diǎn),O是坐標(biāo)原點(diǎn),且(1)求拋物線E的方程;(2)過的直線與E交于C,D兩點(diǎn),在x軸上是否存在定點(diǎn),使得x軸平分?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請說明理由21.(12分)如圖,在四棱錐P-ABCD中,PD=2AD=4,PD⊥CD,PD⊥AD,底面ABCD為正方形,M、N、Q分別為AD、PD、BC的中點(diǎn)(1)證明:面PAQ//面MNC;(2)求二面角M-NC-D的余弦值22.(10分)已知數(shù)列的前項(xiàng)和為,且滿足,,成等比數(shù)列,.(1)求數(shù)列的通項(xiàng)公式;(2)令,求數(shù)列的前項(xiàng)和.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】數(shù)列是首項(xiàng)為1,公比為4的等比數(shù)列,然后可算出答案.【詳解】因?yàn)榈缺葦?shù)列的首項(xiàng)為1,公比為2,所以數(shù)列是首項(xiàng)為1,公比為4的等比數(shù)列所以故選:D2、C【解析】詳解】,令,解得或;令,解得函數(shù)在上遞增,在遞減,在遞增,時(shí),取極大值,極大值是時(shí),函數(shù)取極小值,極小值是,而時(shí),時(shí),,故函數(shù)的最小值為,故選C.3、D【解析】求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間即可,結(jié)合函數(shù)的單調(diào)性求出的最大值即可【詳解】函數(shù)的導(dǎo)數(shù)令可得,可得上單調(diào)遞增,在單調(diào)遞減,函數(shù)在上的最大值是故選D【點(diǎn)睛】本題考查了函數(shù)的單調(diào)性、最值問題,是一道中檔題4、C【解析】設(shè),求導(dǎo)分析的單調(diào)性,又,,,即可得出答案【詳解】解:設(shè),則,又因?yàn)椋?,所以在上單調(diào)遞增,又,,,因?yàn)椋?,所?故選:C5、A【解析】作點(diǎn)關(guān)于原點(diǎn)的對稱點(diǎn),連接、、、,推導(dǎo)出、、三點(diǎn)共線,利用橢圓的定義可求得、、、,推導(dǎo)出,利用勾股定理可得出關(guān)于、的齊次等式,即可求得該橢圓的離心率.【詳解】作點(diǎn)關(guān)于原點(diǎn)的對稱點(diǎn),連接、、、,則為、的中點(diǎn),故四邊形為平行四邊形,故且,則,所以,,故、、三點(diǎn)共線,由橢圓定義,,有,所以,則,再由橢圓定義,有,因?yàn)?,所以,在中,即,所以,離心率故選:A.6、A【解析】恰好為拋物線的焦點(diǎn),等于到準(zhǔn)線的距離,要想最小,過圓心作拋物線的準(zhǔn)線的垂線交拋物線于點(diǎn),交圓于,最小值等于圓心到準(zhǔn)線的距離減去半徑4-1=.考點(diǎn):1.拋物線的定義;2.圓中的最值問題;7、C【解析】設(shè)等差數(shù)列,用基本量代換列方程組,即可求解.【詳解】由題意,從冬至之日起,小寒、大寒、立春、雨水、驚蟄、春分、清明、谷雨、立夏、小滿、芒種這十二個(gè)節(jié)氣的日影長依次成等差數(shù)列,記為數(shù)列,公差為d,則有,即,解得:,即冬至的日影長為16.1尺.故選:C8、C【解析】按照程序框圖的流程進(jìn)行計(jì)算.【詳解】,故輸出S的值為.故選:C9、B【解析】由兩直線垂直可得出關(guān)于實(shí)數(shù)的等式,求解即可.【詳解】由已知可得,解得.故選:B.10、A【解析】由題設(shè)及橢圓方程可得,即可求參數(shù)a的值.【詳解】由題設(shè)易知:橢圓參數(shù),即有,可得故選:A11、D【解析】若直線傾斜角為,由題設(shè)有,結(jié)合即可得傾斜角的大小.【詳解】由直線方程,若其傾斜角為,則,而,∴.故選:D12、B【解析】由導(dǎo)數(shù)判斷函數(shù)的單調(diào)性及指數(shù)的增長趨勢即可判斷.【詳解】當(dāng)時(shí),,∴在上單調(diào)遞增,當(dāng)時(shí),,∴在上單調(diào)遞減,排除A、D;又由指數(shù)函數(shù)增長趨勢,排除C.故選:B二、填空題:本題共4小題,每小題5分,共20分。13、3【解析】根據(jù)拋物線的定義可求最小值.【詳解】如圖,過作拋物線準(zhǔn)線的垂線,垂足為,連接,則,當(dāng)且僅當(dāng)共線時(shí)等號成立,故的最小值為3,故答案為:3.14、【解析】求出橢圓焦點(diǎn)坐標(biāo),即雙曲線焦點(diǎn)坐標(biāo),即雙曲線的半焦距,再求出點(diǎn)坐標(biāo),利用中點(diǎn)在漸近線上得出的關(guān)系式,從而求得,然后可計(jì)算面積【詳解】由題意橢圓中,即,以線段為直徑的圓的方程為,由,解得(取第一象限交點(diǎn)坐標(biāo)),,雙曲線的不在第一象限的漸近線方程為,,的中點(diǎn)坐標(biāo)為,它在漸近線上,所以,化簡得,又,所以,雙曲線方程為,則得,所以故答案為:15、【解析】根據(jù)點(diǎn)到直線的距離公式得到,根據(jù),解不等式得到答案.【詳解】依題意有圓心到直線的距離,即,又無論取何值,,故,故.故答案:16、【解析】由于直線過定點(diǎn),所以當(dāng)時(shí),弦AB的長度最短,然后先求出的長,再利用勾股定理可求出的長,從而可求出三角形ABC的面積【詳解】因?yàn)橹本€恒過定點(diǎn),圓的圓心,半徑為,所以當(dāng)時(shí),弦AB的長度最短,因?yàn)椋?,所以三角形ABC的面積為,故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2)答案見解析;(3).【解析】(1)連結(jié),,由直四棱柱的性質(zhì)及線面垂直的性質(zhì)可得,再由正方形的性質(zhì)及線面垂直的判定、性質(zhì)即可證結(jié)論.(2)選條件①③,設(shè),連結(jié),,由中位線的性質(zhì)、線面垂直的性質(zhì)可得、,再由線面垂直的判定證明結(jié)論;選條件②③,設(shè),連結(jié),由線面平行的性質(zhì)及平行推論可得,由線面垂直的性質(zhì)有,再由線面垂直的判定證明結(jié)論;(3)構(gòu)建空間直角坐標(biāo)系,求平面、平面的法向量,應(yīng)用空間向量夾角的坐標(biāo)表示求平面與平面夾角的余弦值.【小問1詳解】連結(jié),,由直四棱柱知:平面,又平面,所以,又為正方形,即,又,∴平面,又平面,∴.【小問2詳解】選條件①③,可使平面.證明如下:設(shè),連結(jié),,又,分別是,的中點(diǎn),∴.又,所以.由(1)知:平面,平面,則.又,即平面.選條件②③,可使平面.證明如下:設(shè),連結(jié).因?yàn)槠矫?,平面,平面平面,所以,又,則.由(1)知:平面,平面,則.又,即平面.【小問3詳解】由(2)可知,四邊形為正方形,所以.因?yàn)椋?,兩兩垂直,如圖,以為原點(diǎn),建立空間直角坐標(biāo)系,則,,,,,,所以,.由(1)知:平面的一個(gè)法向量為.設(shè)平面的法向量為,則,令,則.設(shè)平面與平面的夾角為,則,所以平面與平面夾角的余弦值為.18、(1)答案見解析(2)答案見解析【解析】(1)求導(dǎo)數(shù),分和,兩種情況討論,即可求得的單調(diào)性;(2)令,利用導(dǎo)數(shù)求得單調(diào)遞增,結(jié)合,得到,進(jìn)而證得.【詳解】(1)由函數(shù),可得,當(dāng)時(shí),,在內(nèi)單調(diào)遞減;當(dāng)時(shí),由有,當(dāng)時(shí),,單調(diào)遞減;當(dāng)時(shí),,單調(diào)遞增.(2)證明:令,則,當(dāng)時(shí),,單調(diào)遞增,因?yàn)?,所以,即,?dāng)時(shí),可得,即【點(diǎn)睛】利用導(dǎo)數(shù)證明不等式常見類型及解題策略(1)構(gòu)造差函數(shù).根據(jù)差函數(shù)導(dǎo)函數(shù)符號,確定差函數(shù)單調(diào)性,利用單調(diào)性得不等量關(guān)系,進(jìn)而證明不等式.(2)根據(jù)條件,尋找目標(biāo)函數(shù).一般思路為利用條件將求和問題轉(zhuǎn)化為對應(yīng)項(xiàng)之間大小關(guān)系,或利用放縮、等量代換將多元函數(shù)轉(zhuǎn)化為一元函數(shù).19、(1);(2)【解析】(1)根據(jù)題意用表示出與,再代入,再化簡即可得出答案。(2)設(shè),利用表示出點(diǎn),再將點(diǎn)代入橢圓,化簡即可得出答案。【詳解】(1)由題意知,所以化簡得:(2)設(shè),因?yàn)?,則將代入橢圓得化簡得【點(diǎn)睛】本題考查軌跡方程,一般求某點(diǎn)的軌跡方程,只需要設(shè)該點(diǎn)為,利用所給條件建立的關(guān)系式,化簡即可。屬于基礎(chǔ)題。20、(1)(2)存在;【解析】(1)設(shè),利用向量坐標(biāo)運(yùn)算求出p即可;(2)設(shè)直線MC,MD的斜率分別為,,利用坐標(biāo)計(jì)算恒成立,即可求解.【小問1詳解】拋物線的焦點(diǎn)為,設(shè),則,因?yàn)椋?,得所以拋物線E的方程為【小問2詳解】假設(shè)在x軸上存在定點(diǎn),使得x軸平分設(shè)直線的方程為,設(shè)點(diǎn),,聯(lián)立,可得∵恒成立,∴,設(shè)直線MC,MD的斜率分別為,,則由定點(diǎn),使得x軸平分,則,所以把根與系數(shù)的關(guān)系代入可得,得故存在滿足題意.綜上所述,在x軸上存在定點(diǎn),使得x軸平分21、(1)證明過程見解析(2)【解析】(1)由線線平行證明線面平行;(2)建立空間直角坐標(biāo)系,利用空間向量進(jìn)行求解二面角的余弦值.【小問1詳解】因?yàn)镸,N是DA,PD的中點(diǎn),所以MN//AP,因?yàn)槠矫鍼AQ,平面PAQ,所以MN//平面PAQ因?yàn)樗倪呅蜛BCD為正方形,且Q為BC中點(diǎn),所以MA//CQ,且MA=CQ,所以四邊形MAQC為平行四邊形,所以CM//AQ,因?yàn)槠矫鍼AQ,平面PAQ,所以MC//平面PAQ,因?yàn)椋悦鍼AQ//面MNC【小問2詳解】因?yàn)镻D⊥CD,PD⊥AD,AD⊥CD故以D為坐標(biāo)原點(diǎn),DA所在直線為x軸,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 海外倉儲服務(wù)合作協(xié)議
- 鋁包木窗行業(yè)市場發(fā)展及發(fā)展趨勢與投資戰(zhàn)略研究報(bào)告
- 2025至2030年雙面拔片式提花針織機(jī)項(xiàng)目投資價(jià)值分析報(bào)告
- 招標(biāo)木材合同范本
- 2025至2030年中國立式注塑成型機(jī)數(shù)據(jù)監(jiān)測研究報(bào)告
- 2025年麻線席項(xiàng)目可行性研究報(bào)告
- 光伏發(fā)電監(jiān)控分析報(bào)告
- 鄰居到家維修合同范本
- 全國江西科學(xué)技術(shù)版小學(xué)信息技術(shù)六年級下冊第一單元第2課《控制的分類》教學(xué)設(shè)計(jì)
- 數(shù)學(xué)游戲第 2節(jié)在操場上玩一玩(教學(xué)設(shè)計(jì))-2024-2025學(xué)年一年級數(shù)學(xué)上冊人教版
- 電焊工安全培訓(xùn)(超詳)課件
- 2025蛇年中小學(xué)春節(jié)寒假安全教育課件模板
- 康復(fù)護(hù)士講課課件
- 2024年學(xué)??蒲泄ぷ饔?jì)劃(6篇)
- 學(xué)校食堂廚師崗位職責(zé)
- 如何做好4S管理
- 民航客艙應(yīng)急設(shè)備
- 化工總控工培訓(xùn)
- 山西電網(wǎng)新能源場站涉網(wǎng)試驗(yàn)流程使用說明書
- 課題1 碳單質(zhì)的多樣性(第1課時(shí))課件九年級化學(xué)上冊人教版2024
- 康復(fù)醫(yī)學(xué)題庫與答案
評論
0/150
提交評論