浙江省富陽二中2023-2024學(xué)年數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第1頁
浙江省富陽二中2023-2024學(xué)年數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第2頁
浙江省富陽二中2023-2024學(xué)年數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第3頁
浙江省富陽二中2023-2024學(xué)年數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第4頁
浙江省富陽二中2023-2024學(xué)年數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

浙江省富陽二中2023-2024學(xué)年數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視模擬試題注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.?dāng)?shù)學(xué)家歌拉在1765年提出定理:三角形的外心、重心、垂心依次位于同一直線上,且重心到外心的距離是重心到垂心距離的一半.這條直線被后人稱為三角形的歐拉線.已知的三個(gè)頂點(diǎn)分別為,,,則的歐拉線方程是()A. B.C. D.2.已知橢圓的右焦點(diǎn)和右頂點(diǎn)分別為F,A,離心率為,且,則n的值為()A.4 B.3C.2 D.3.第屆全運(yùn)會(huì)于年月在陜西西安順利舉辦,其中水上項(xiàng)目在西安奧體中心游泳跳水館進(jìn)行,為了應(yīng)對(duì)比賽,大會(huì)組委會(huì)將對(duì)泳池進(jìn)行檢修,已知泳池深度為,其容積為,如果池底每平方米的維修費(fèi)用為元,設(shè)入水處的較短池壁長度為,且據(jù)估計(jì)較短的池壁維修費(fèi)用與池壁長度成正比,且比例系數(shù)為,較長的池壁維修費(fèi)用滿足代數(shù)式,則當(dāng)泳池的維修費(fèi)用最低時(shí)值為()A. B.C. D.4.已知定義在上的函數(shù)滿足:,且,則的解集為()A. B.C. D.5.若正三棱柱的所有棱長都相等,D是的中點(diǎn),則直線AD與平面所成角的正弦值為A. B.C. D.6.若任取,則x與y差的絕對(duì)值不小于1的概率為()A. B.C. D.7.在等比數(shù)列中,,,則()A.2 B.4C.6 D.88.2021年是中國共產(chǎn)黨百年華誕,3月24日,中宣部發(fā)布中國共產(chǎn)黨成立100周年慶祝活動(dòng)標(biāo)識(shí)(如圖1).其中“100”的兩個(gè)“0”設(shè)計(jì)為兩個(gè)半徑為R的相交大圓,分別內(nèi)含一個(gè)半徑為r的同心小圓,且同心小圓均與另一個(gè)大圓外切(如圖2).已知,則由其中一個(gè)圓心向另一個(gè)小圓引的切線長與兩大圓的公共弦長之比為()A. B.3C. D.9.如圖,在長方體中,是線段上一點(diǎn),且,若,則()A. B.C. D.10.已知等比數(shù)列的前n項(xiàng)和為,公比為q,若,則下列結(jié)論正確的是()A. B.C. D.11.命題“,”的否定形式是()A.“,” B.“,”C.“,” D.“,”12.在中,角A,B,C的對(duì)邊分別為a,b,c,若,且,則為()A.等腰三角形 B.直角三角形C.銳角三角形 D.鈍角三角形二、填空題:本題共4小題,每小題5分,共20分。13.如圖①,用一個(gè)平面去截圓錐,得到的截口曲線是橢圓.許多人從純幾何的角度出發(fā)對(duì)這個(gè)問題進(jìn)行過研究,其中比利時(shí)數(shù)學(xué)家(1794-1847)的方法非常巧妙,極具創(chuàng)造性.在圓錐內(nèi)放兩個(gè)大小不同的球,使得它們分別與圓錐的側(cè)面,截面相切,兩個(gè)球分別與截面相切于,在截口曲線上任取一點(diǎn),過作圓錐的母線,分別與兩個(gè)球相切于,由球和圓的幾何性質(zhì),可以知道,,于是.由的產(chǎn)生方法可知,它們之間的距離是定值,由橢圓定義可知,截口曲線是以為焦點(diǎn)的橢圓.如圖②,一個(gè)半徑為2的球放在桌面上,桌面上方有一個(gè)點(diǎn)光源,則球在桌面上的投影是橢圓.已知是橢圓的長軸,垂直于桌面且與球相切,,則橢圓的離心率為___________.14.萊昂哈德·歐拉于1765年在他的著作《三角形的幾何學(xué)》中首次提出定理:三角形的重心、垂心和外心共線.后來人們稱這條直線為該三角形的歐拉線.已知的三個(gè)頂點(diǎn)坐標(biāo)分別是,,,則的垂心坐標(biāo)為______,的歐拉線方程為______15.設(shè)等差數(shù)列,前項(xiàng)和分別為,,若對(duì)任意自然數(shù)都有,則的值為______.16.已知數(shù)列滿足,,則使得成立的n的最小值為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知復(fù)數(shù),是實(shí)數(shù).(1)求復(fù)數(shù)z;(2)若復(fù)數(shù)在復(fù)平面內(nèi)所表示的點(diǎn)在第二象限,求實(shí)數(shù)m的取值范圍.18.(12分)已知數(shù)列中,,且(1)求證:數(shù)列是等差數(shù)列,并求出;(2)數(shù)列前項(xiàng)和為,求19.(12分)如圖,點(diǎn)是曲線上的動(dòng)點(diǎn)(點(diǎn)在軸左側(cè)),以點(diǎn)為頂點(diǎn)作等腰梯形,使點(diǎn)在此曲線上,點(diǎn)在軸上.設(shè),等腰梯的面積為.(1)寫出函數(shù)的解析式,并求出函數(shù)的定義域;(2)當(dāng)為何值時(shí),等腰梯形的面積最大?求出最大面積.20.(12分)如圖,在四棱錐中,底面為直角梯形,,,平面底面,為的中點(diǎn),是棱上的點(diǎn),,,.(1)求證:平面平面;(2)若,求異面直線與所成角余弦值;(3)在線段上是否存在一點(diǎn),使二面角大小為?若存在,請(qǐng)指出點(diǎn)的位置,若不存在,請(qǐng)說明理由.21.(12分)如圖,ABCD是邊長為2的正方形,DE⊥平面ABCD,AF∥DE,DE=2AF=2(1)證明:AC∥平面BEF;(2)求點(diǎn)C到平面BEF的距離22.(10分)已知圓心為的圓,滿足下列條件:圓心在軸上,與直線相切,且被軸截得的弦長為,圓的面積小于(1)求圓的標(biāo)準(zhǔn)方程;(2)設(shè)過點(diǎn)的直線與圓交于不同的兩點(diǎn)、,以、為鄰邊作平行四邊形.是否存在這樣的直線,使得直線與恰好平行?如果存在,求出的方程,如果不存在,請(qǐng)說明理由

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】根據(jù)的三個(gè)頂點(diǎn)坐標(biāo),先求解出重心的坐標(biāo),然后再根據(jù)三個(gè)點(diǎn)坐標(biāo)求解任意兩條垂直平分線的方程,聯(lián)立方程,即可算出外心的坐標(biāo),最后根據(jù)重心和外心的坐標(biāo)使用點(diǎn)斜式寫出直線方程.【詳解】由題意可得的重心為.因?yàn)?,,所以線段的垂直平分線的方程為.因?yàn)?,,所以直線的斜率,線段的中點(diǎn)坐標(biāo)為,則線段的垂直平分線的方程為.聯(lián)立,解得,則的外心坐標(biāo)為,故的歐拉線方程是,即故選:B.2、B【解析】根據(jù)橢圓方程及其性質(zhì)有,求解即可.【詳解】由題設(shè),,整理得,可得.故選:B3、A【解析】根據(jù)題意得到泳池維修費(fèi)用的的解析式,再利用導(dǎo)數(shù)求出最值即可【詳解】解:設(shè)泳池維修的總費(fèi)用為元,則由題意得,則,令,解得,當(dāng)時(shí),;當(dāng)時(shí),,故當(dāng)時(shí),有最小值因此,當(dāng)較短池壁為時(shí),泳池的總維修費(fèi)用最低故選A4、A【解析】令,利用導(dǎo)數(shù)可判斷其單調(diào)性,從而可解不等式.【詳解】設(shè),則,故為上的增函數(shù),而可化為即,故即,所以不等式的解集為,故選:A.5、A【解析】建立空間直角坐標(biāo)系,得到相關(guān)點(diǎn)的坐標(biāo)后求出直線的方向向量和平面的法向量,借助向量的運(yùn)算求出線面角的正弦值【詳解】取AC的中點(diǎn)為坐標(biāo)原點(diǎn),建立如圖所示的空間直角坐標(biāo)系設(shè)三棱柱的棱長為2,則,∴設(shè)為平面的一個(gè)法向量,由故令,得設(shè)直線AD與平面所成角為,則,所以直線AD與平面所成角的正弦值為故選A【點(diǎn)睛】空間向量的引入為解決立體幾何問題提供了較好的方法,解題時(shí)首先要建立適當(dāng)?shù)淖鴺?biāo)系,得到相關(guān)點(diǎn)的坐標(biāo)后借助向量的運(yùn)算,將空間圖形的位置關(guān)系或數(shù)量關(guān)系轉(zhuǎn)化為向量的運(yùn)算處理.在解決空間角的問題時(shí),首先求出向量夾角的余弦值,然后再轉(zhuǎn)化為所求的空間角.解題時(shí)要注意向量的夾角和空間角之間的聯(lián)系和區(qū)別,避免出現(xiàn)錯(cuò)誤6、C【解析】根據(jù)題意,在平面直角坐標(biāo)系中分析以及與差的絕對(duì)值不小于1所對(duì)應(yīng)的平面區(qū)域,求出其面積,由幾何概型公式計(jì)算可得答案.【詳解】根據(jù)題意,,其對(duì)應(yīng)的區(qū)域?yàn)檎叫危涿娣e,若與差的絕對(duì)值不小于1,即,即或,對(duì)應(yīng)的區(qū)域?yàn)閳D中的陰影部分,其面積為,故與差的絕對(duì)值不小于1的概率.故選:C7、D【解析】由等比中項(xiàng)轉(zhuǎn)化得,可得,求解基本量,由等比數(shù)列通項(xiàng)公式即得解【詳解】設(shè)公比為,則由,得,即故,解得故選:D8、C【解析】作出圖形,進(jìn)而根據(jù)勾股定理并結(jié)合圓與圓的位置關(guān)系即可求得答案.【詳解】如示意圖,由題意,,則,又,,所以,所以.故選:C.9、A【解析】將利用、、表示,再利用空間向量的加法可得出關(guān)于、、的表達(dá)式,進(jìn)而可求得的值.【詳解】連接、,因,因?yàn)槭蔷€段上一點(diǎn),且,則,因此,因此,.故選:A.10、D【解析】根據(jù),可求得,然后逐一分析判斷各個(gè)選項(xiàng)即可得解.【詳解】解:因?yàn)?,所以,因?yàn)椋?,所以,故A錯(cuò)誤;又,所以,所以,所以,故BC錯(cuò)誤;所以,故D正確.故選:D.11、C【解析】由全稱命題的否定是特稱命題即得.【詳解】“任意”改為“存在”,否定結(jié)論即可.命題“,”的否定形式是“,”.故選:C.12、B【解析】由余弦定理可得,再利用可得答案.【詳解】因?yàn)?,所以,由余弦定理,因?yàn)?,所以,又,∴,故為直角三角?故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、##0.5【解析】利用球與圓錐相切,得出截面,在平面圖形中求解,以及圓錐曲線的來源來理解切點(diǎn)為橢圓的一個(gè)焦點(diǎn),求出,得出離心率.【詳解】設(shè)球切于,切于E,,球半徑為2,所以,,∴,又中,,,故橢圓長軸長為,,根據(jù)橢圓在圓錐中截面與二球相切的切點(diǎn)為橢圓的焦點(diǎn)知:球O與相切的切點(diǎn)為橢圓的一個(gè)焦點(diǎn),且,,橢圓的離心率為.故答案:.14、①.##(0,1.5)②.【解析】由高線聯(lián)立可得垂心,由垂心與重心可得歐拉線方程.【詳解】由,可知邊上的高所在的直線為,又,因此邊上的高所在的直線的斜率為,所以邊上的高所在的直線為:,即,所以,所以的垂心坐標(biāo)為,由重心坐標(biāo)公式可得的重心坐標(biāo)為,所以的歐拉線方程為:,化簡得.故答案為:;15、【解析】由等差數(shù)列的性質(zhì)可得:.再利用已知即可得出【詳解】由等差數(shù)列的性質(zhì)可得:對(duì)于任意的都有,則故答案為:【點(diǎn)睛】本題考查了等差數(shù)列的性質(zhì),求和公式,考查了推理能力與計(jì)算能力,屬于中檔題16、11【解析】由題設(shè)可得,結(jié)合等比數(shù)列的定義知從第二項(xiàng)開始是公比為2的等比數(shù)列,進(jìn)而寫出的通項(xiàng)公式,即可求使成立的最小值n.【詳解】因?yàn)椋?,兩式相除得,整理?因?yàn)椋蕪牡诙?xiàng)開始是等比數(shù)列,且公比為2,因?yàn)?,則,所以,則,由得:,故故答案為:11.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)先將代入化簡,再由其虛部為零可求出的值,從而可求出復(fù)數(shù),(2)先對(duì)化簡,再由題意可得從而可求得結(jié)果【小問1詳解】因?yàn)椋?,因?yàn)槭菍?shí)數(shù),所以,解得.故.【小問2詳解】因?yàn)?,所?因?yàn)閺?fù)數(shù)所表示的點(diǎn)在第二象限,所以解得,即實(shí)數(shù)m的取值范圍是.18、(1)證明見解析,(2)【解析】(1)利用等差數(shù)列的定義可證是等差數(shù)列,利用等差數(shù)列的通項(xiàng)公式可求.(2)利用錯(cuò)位相減法可求.【小問1詳解】因?yàn)?,是以為首?xiàng),為公差的等差數(shù)列,,.【小問2詳解】,,,.19、(1);(2)當(dāng)時(shí)取到最大值,【解析】(1)設(shè)點(diǎn),則根據(jù)題意得,,故;(2)令,研究函數(shù)的單調(diào)性,進(jìn)而得的最值,進(jìn)而得的最大值.【詳解】解:(1)根據(jù)題意,設(shè)點(diǎn),由是曲線上的動(dòng)點(diǎn)得:,由于橢圓與軸交點(diǎn)為,故,所以即:(2)結(jié)合(1),對(duì)兩邊平方得:,令,則,所以當(dāng)時(shí),,當(dāng)時(shí),,所以在區(qū)間單調(diào)遞增,在上單調(diào)遞減,所以在處取到最大值,,所以當(dāng)時(shí),取到最大值,.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究實(shí)際問題,考查數(shù)學(xué)應(yīng)用能力與計(jì)算能力,是中檔題.20、(1)證明見解析;(2);(3)存在,點(diǎn)在線段上位于靠近點(diǎn)的四等分點(diǎn)處.【解析】(1)證明平面,利用面面垂直的判定定理可證得結(jié)論成立;(2)以點(diǎn)為坐標(biāo)原點(diǎn),、、所在直線分別為、、軸建立空間直角坐標(biāo)系,利用空間向量法可求得異面直線與所成角的余弦值;(3)假設(shè)存在點(diǎn),設(shè),其中,利用空間向量法可得出關(guān)于的方程,結(jié)合的取值范圍可求得的值,即可得出結(jié)論.【小問1詳解】證明:,,為的中點(diǎn),則且,四邊形為平行四邊形,.,即,,又平面平面,平面平面,平面,平面平面,平面平面.【小問2詳解】解:,為的中點(diǎn),.平面平面,且平面平面,平面,平面.如圖,以點(diǎn)為坐標(biāo)原點(diǎn),、、所在直線分別為、、軸建立空間直角坐標(biāo)系,則、、、、,,,則,,異面直線與所成角的余弦值為.【小問3詳解】解:假設(shè)存在點(diǎn),設(shè),其中,所以,,且,設(shè)平面法向量為,所以,令,可得,由(2)知平面的一個(gè)法向量為,二面角為,則,整理可得,因,解得.故存在點(diǎn),且點(diǎn)在線段上位于靠近點(diǎn)的四等分點(diǎn)處.21、(1)證明見解析(2)【解析】(1)建立空間直角坐標(biāo)系,進(jìn)而求出平面BEF的法向量,然后證明線面平行;(2)算出在向量方向上的投影,進(jìn)而求得答案.【小問1詳解】因?yàn)镈E⊥平面ABCD,DA、DC平面ABCD,所以DE⊥DA,DE⊥DC,因?yàn)锳BCD是正方形,所以DA⊥DC.以D為坐標(biāo)原點(diǎn),所在方向分別為軸的正方向建立空間直角坐標(biāo)系,則A(2,0,0),C(0,2,0),B(2,2,0),E(0,0,2),F(xiàn)(2,0,1),所以,,設(shè)平面BEF的法向量,因?yàn)?,所以?x-2y+2z=0,-2y+z=0,令y=1,則=(1,1,2),又因?yàn)椋?-2,2,0),所以,即,而平面BEF,所以AC∥平面BEF.【小問2詳解】設(shè)點(diǎn)C到平面BEF的距離為d,而,所以,所以點(diǎn)C到平面BEF的距離為22、(1);(2)不存在,理由見解析.【解析】(1)設(shè)圓心,設(shè)圓的半徑為,可得出,根據(jù)已知條件可得出關(guān)于實(shí)數(shù)的方程,求出的值,可得出的值,進(jìn)而可得出圓的標(biāo)準(zhǔn)方程;(2)分

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論