云南省紅河州綠春一中2023-2024學(xué)年高二數(shù)學(xué)第一學(xué)期期末綜合測試模擬試題含解析_第1頁
云南省紅河州綠春一中2023-2024學(xué)年高二數(shù)學(xué)第一學(xué)期期末綜合測試模擬試題含解析_第2頁
云南省紅河州綠春一中2023-2024學(xué)年高二數(shù)學(xué)第一學(xué)期期末綜合測試模擬試題含解析_第3頁
云南省紅河州綠春一中2023-2024學(xué)年高二數(shù)學(xué)第一學(xué)期期末綜合測試模擬試題含解析_第4頁
云南省紅河州綠春一中2023-2024學(xué)年高二數(shù)學(xué)第一學(xué)期期末綜合測試模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

云南省紅河州綠春一中2023-2024學(xué)年高二數(shù)學(xué)第一學(xué)期期末綜合測試模擬試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.中國古代《易經(jīng)》一書中記載,人們通過在繩子上打結(jié)來記錄數(shù)據(jù),即“結(jié)繩計(jì)數(shù)”,如圖,一位古人在從右到左(即從低位到高位)依次排列的紅繩子上打結(jié),滿六進(jìn)一,用6來記錄每年進(jìn)的錢數(shù),由圖可得,這位古人一年收入的錢數(shù)用十進(jìn)制表示為()A.180 B.179C.178 D.1772.已知空間向量,,,則()A.4 B.-4C.0 D.23.在平面區(qū)域內(nèi)隨機(jī)投入一點(diǎn)P,則點(diǎn)P的坐標(biāo)滿足不等式的概率是()A. B.C. D.4.設(shè)、分別是橢圓()的左、右焦點(diǎn),過的直線l與橢圓E相交于A、B兩點(diǎn),且,則的長為()A. B.1C. D.5.若關(guān)于x的不等式的解集為,則關(guān)于x的不等式的解集是()A. B.,或C.,或 D.,或,或6.已知圓上有三個(gè)點(diǎn)到直線的距離等于1,則的值為()A. B.C. D.17.在等比數(shù)列中,若,,則()A. B.C. D.8.過拋物線C:y2=4x的焦點(diǎn)F分別作斜率為k1、k2的直線l1、l2,直線l1與C交于A、B兩點(diǎn),直線l2與C交于D、E兩點(diǎn),若|k1·k2|=2,則|AB|+|DE|的最小值為()A.10 B.12C.14 D.169.設(shè)雙曲線的實(shí)軸長為8,一條漸近線為,則雙曲線的方程為()A. B.C. D.10.已知命題:拋物線的焦點(diǎn)坐標(biāo)為;命題:等軸雙曲線的離心率為,則下列命題是真命題的是()A. B.C. D.11.設(shè),為雙曲線的上,下兩個(gè)焦點(diǎn),過的直線l交該雙曲線的下支于A,B兩點(diǎn),且滿足,,則雙曲線的離心率為()A. B.C. D.12.某商場有四類食品,其中糧食類、植物油類、動(dòng)物性食品類以及果蔬類分別有40種、10種、30種、20種,現(xiàn)從中抽取一個(gè)容量為20的樣本進(jìn)行食品安全檢測.若采用分層抽樣的方法抽取樣本,則抽取的植物油類與果蔬類食品種數(shù)之和是()A.4 B.5C.6 D.7二、填空題:本題共4小題,每小題5分,共20分。13.已知曲線,①若,則是橢圓,其焦點(diǎn)在軸上;②若,則是圓,其半徑為;③若,則是雙曲線,其漸近線方程為;④若,,則是兩條直線.以上四個(gè)命題,其中正確的序號為_________.14.兩姐妹同時(shí)推銷某一商品,現(xiàn)抽取他們其中8天的銷售量(單位:臺),得到的莖葉圖如圖所示,已知妹妹的銷售量的平均數(shù)為14,姐姐的銷售量的中位數(shù)比妹妹的銷售量的眾數(shù)大2,則的值為______.15.已知雙曲線:的右焦點(diǎn)為,過點(diǎn)向雙曲線的一條漸近線引垂線,垂足為,交另一條漸近線于,若,則雙曲線的漸近線方程為__________16.已知p:“”為真命題,則實(shí)數(shù)a的取值范圍是_________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)一杯100℃的開水放在室溫25℃的房間里,1分鐘后水溫降到85℃,假設(shè)每分鐘水溫變化量和水溫與室溫之差成正比(1)分別求2分鐘,3分鐘后的水溫;(2)記n分鐘后的水溫為,證明:是等比數(shù)列,并求出的通項(xiàng)公式;(3)當(dāng)水溫在40℃到55℃之間時(shí)(包括40℃和55℃),為最適合飲用的溫度,則在水燒開后哪個(gè)時(shí)間段飲用最佳.(參考數(shù)據(jù):)18.(12分)已知數(shù)列為等差數(shù)列,滿足,.(1)求數(shù)列的通項(xiàng)公式;(2)求數(shù)列的前n項(xiàng)和,并求的最大值.19.(12分)已知數(shù)列滿足,(1)設(shè),求證數(shù)列為等差數(shù)列,并求數(shù)列的通項(xiàng)公式;(2)設(shè),數(shù)列的前n項(xiàng)和為,是否存在正整數(shù)m,使得對任意的都成立?若存在,求出m的最小值;若不存在,試說明理由20.(12分)如圖,在空間四邊形中,分別是的中點(diǎn),分別是上的點(diǎn),滿足.(1)求證:四點(diǎn)共面;(2)設(shè)與交于點(diǎn),求證:三點(diǎn)共線.21.(12分)已知橢圓:的四個(gè)頂點(diǎn)組成的四邊形的面積為,且經(jīng)過點(diǎn).(1)求橢圓的方程;(2)若橢圓的下頂點(diǎn)為,如圖所示,點(diǎn)為直線上的一個(gè)動(dòng)點(diǎn),過橢圓的右焦點(diǎn)的直線垂直于,且與交于,兩點(diǎn),與交于點(diǎn),四邊形和的面積分別為,,求的最大值.22.(10分)平面直角坐標(biāo)系中,過橢圓:右焦點(diǎn)的直線交M于A,B兩點(diǎn),P為AB的中點(diǎn),且OP的斜率為.(1)求橢圓M的方程;(2)C,D為橢圓M上的兩點(diǎn),若四邊形ACBD的對角線CD與AB垂直,求四邊形ACBD面積的最大值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】由于從右到左依次排列的繩子上打結(jié),滿六進(jìn)一,所以從右到左的數(shù)分別為、、,然后把它們相加即可.【詳解】(個(gè)).所以古人一年收入的錢數(shù)用十進(jìn)制表示為個(gè).故選:D.2、A【解析】根據(jù)空間向量平行求出x,y,進(jìn)而求得答案.【詳解】因?yàn)?,所以存在?shí)數(shù),使得,則.故選:A.3、A【解析】根據(jù)題意作出圖形,進(jìn)而根據(jù)幾何概型求概率的方法求得答案.【詳解】根據(jù)題意作出示意圖,如圖所示:于,所求概率.故選:A.4、C【解析】由橢圓的定義得:,,結(jié)合條件可得,即可得答案.【詳解】由橢圓的定義得:,,又,,所以,由橢圓知,所以.故選:C5、D【解析】先利用已知一元二次不等式的解集求得參數(shù),再代入所求不等式,利用分式大于零,則分子分母同號,列不等式計(jì)算即得結(jié)果.【詳解】不等式解集為,即的二根是1和2,利用根和系數(shù)的關(guān)系可知,故不等式即轉(zhuǎn)化成,即,等價(jià)于或者,解得或,或者.故解集為,或,或.故選:D.【點(diǎn)睛】分式不等式的解法:(1)先化簡成右邊為零的形式(或),等價(jià)于一元二次不等式(或)再求解即可;(2)先化簡成右邊為零的形式(或),再利用分子分母同號(或者異號),列不等式組求解即可.6、A【解析】求出圓心和半徑,由題意可得圓心到直線的距離,列方程即可求得的值.【詳解】由圓可得圓心,半徑,因?yàn)閳A上有三個(gè)點(diǎn)到直線的距離等于1,所以圓心到直線的距離,可得:,故選:A.7、D【解析】由等比數(shù)列的性質(zhì)得,化簡,代入數(shù)值求解.【詳解】因?yàn)閿?shù)列是等比數(shù)列,所以,由題意,所以.故選:D8、B【解析】設(shè)出l1的方程為,與拋物線聯(lián)立后得到兩根之和,兩根之積,用弦長公式表達(dá)出,同理表達(dá)出,利用基本不等式求出的最小值.【詳解】拋物線C:y2=4x的焦點(diǎn)F為,直線l1的方程為,則聯(lián)立后得到,設(shè),,,則,同理設(shè)可得:,因?yàn)閨k1·k2|=2,所以,當(dāng)且僅當(dāng),即或時(shí),等號成立,故選:B9、D【解析】雙曲線的實(shí)軸長為,漸近線方程為,代入解析式即可得到結(jié)果.【詳解】雙曲線的實(shí)軸長為8,即,,漸近線方程為,進(jìn)而得到雙曲線方程為.故選:D.10、D【解析】求出的焦點(diǎn)坐標(biāo),及等軸雙曲線的離心率,判斷出為假命題,q為真命題,進(jìn)而判斷出答案.【詳解】拋物線的焦點(diǎn)坐標(biāo)為,故命題為假命題;命題:等軸雙曲線中,,所以離心率為,故命題q為真命題,所以為真命題,其他選項(xiàng)均為假命題.故選:D11、A【解析】設(shè),表示出,由勾股定理列式計(jì)算得,然后在,再由勾股定理列式,計(jì)算離心率.【詳解】由題意得,,且,如圖所示,設(shè),由雙曲線的定義可得,,因?yàn)椋?,得,所以,在中,,?故選:A【點(diǎn)睛】雙曲線的離心率是雙曲線最重要的幾何性質(zhì),求雙曲線的離心率(或離心率的取值范圍),常見有兩種方法:求出,代入公式;②只需要根據(jù)一個(gè)條件得到關(guān)于的齊次式,結(jié)合轉(zhuǎn)化為的齊次式,然后等式(不等式)兩邊分別除以或轉(zhuǎn)化為關(guān)于的方程(不等式),解方程(不等式)即可得(的取值范圍)12、C【解析】按照分層抽樣的定義進(jìn)行抽取.【詳解】按照分層抽樣的定義有,糧食類:植物油類:動(dòng)物性食品類:果蔬類=4:1:3:2,抽20個(gè)出來,則糧食類8個(gè),植物油類2個(gè),動(dòng)物性食品類6個(gè),果蔬類4個(gè),則抽取的植物油類與果蔬類食品種數(shù)之和是6個(gè).故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、①③④【解析】通過m,n的取值判斷焦點(diǎn)坐標(biāo)所在軸,判斷①,求出圓的半徑判斷②;通過求解雙曲線的漸近線方程,判斷③;利用,,判斷曲線是否是兩條直線判斷④【詳解】解:①若,則,因?yàn)榉匠袒癁椋?,焦點(diǎn)坐標(biāo)在y軸,所以①正確;②若,則C是圓,其半徑為:,不一定是,所以②不正確;③若,則C是雙曲線,其漸近線方程為,化簡可得,所以③正確;④若,,方程化為,則C是兩條直線,所以④正確;故答案為:①③④14、13【解析】先根據(jù)妹妹的銷售量的平均數(shù)為14,求得y,進(jìn)而得到其眾數(shù),然后再根據(jù)姐姐的銷售量的中位數(shù)比妹妹的銷售量的眾數(shù)大2,得到姐姐的銷售量的中位數(shù).【詳解】因?yàn)槊妹玫匿N售量的平均數(shù)為14,所以,解得,由莖葉圖知:妹妹的銷售量的眾數(shù)是14,因?yàn)榻憬愕匿N售量的中位數(shù)比妹妹的銷售量的眾數(shù)大2,所以姐姐的銷售量的中位數(shù)是16,所以,解得,所以,故答案為:1315、【解析】由題意得雙曲線的右焦點(diǎn)F(c,0),設(shè)一漸近線OM的方程為,則另一漸近線ON的方程為.設(shè),∵,∴,∴,解得∴點(diǎn)M的坐標(biāo)為,又,∴,整理得,∴雙曲線的漸近線方程為答案:點(diǎn)睛:(1)已知雙曲線的標(biāo)準(zhǔn)方程求雙曲線的漸近線方程時(shí),只要令雙曲線的標(biāo)準(zhǔn)方程中“1”為“0”就得到兩漸近線方程,即方程就是雙曲線的兩條漸近線方程(2)求雙曲線的漸進(jìn)線方程的關(guān)鍵是求出的關(guān)系,并根據(jù)焦點(diǎn)的位置確定出漸近線的形式,并進(jìn)一步得到其方程16、【解析】根據(jù)條件將問題轉(zhuǎn)化不等式在上有解,則,由此求解出的取值范圍.【詳解】因?yàn)椤啊睘檎婷},所以不等式在上有解,所以,所以,故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)2分鐘的水溫為℃,3分鐘后的水溫℃;(2)證明見解析,,;(3)在水燒開后4到7分鐘飲用最佳.【解析】(1)根據(jù)給定條件設(shè)第n分鐘后的水溫為,探求出與的關(guān)系即可計(jì)算作答.(2)利用(1)的信息,列式變形、推導(dǎo)即可得證,進(jìn)而求出的通項(xiàng)公式.(3)由(2)的結(jié)論列不等式,借助對數(shù)函數(shù)的性質(zhì)求解即得.【小問1詳解】設(shè)第n分鐘后的水溫為,正比例系數(shù)為k,記,依題意,,當(dāng)時(shí),,則有,解得,因此,,即有,,所以2分鐘的水溫為℃,3分鐘后的水溫℃.小問2詳解】由(1)知,,時(shí),,,則有,即,而,于是得是以為首項(xiàng),為公比的等比數(shù)列,則有,即,所以是等比數(shù)列,的通項(xiàng)公式是,.【小問3詳解】由(2)及已知得:,即,整理得,兩邊取常用對數(shù)得:,而,解得,即,所以在水燒開后4到7分鐘飲用最佳.【點(diǎn)睛】思路點(diǎn)睛:涉及實(shí)際意義給出的數(shù)列問題,正確理解實(shí)際意義,列出關(guān)系式,再借助數(shù)列思想探求相鄰兩項(xiàng)間關(guān)系即可推理作答.18、(1)(2),45【解析】(1)由等差數(shù)列的通項(xiàng)列出方程組,得出通項(xiàng)公式;(2)先得出,再由二次函數(shù)的性質(zhì)得出最大值.【小問1詳解】由,解得,即【小問2詳解】,二次型函數(shù)開口向下,對稱軸為,則當(dāng)或時(shí),有最大值45.19、(1);(2)存在,3【解析】(1)結(jié)合遞推關(guān)系可證得bn+1-bn1,且b1=1,可證數(shù)列{bn}為等差數(shù)列,據(jù)此可得數(shù)列的通項(xiàng)公式;(2)結(jié)合通項(xiàng)公式裂項(xiàng)有求和有,再結(jié)合條件可得,即求【詳解】(1)證明:∵,又由a1=2,得b1=1,所以數(shù)列{bn}是首項(xiàng)為1,公差為1的等差數(shù)列,所以bn=1+(n-1)×1=n,由,得(2)解:∵,,所以,依題意,要使對于n∈N*恒成立,只需,解得m≥3或m≤-4又m>0,所以m≥3,所以正整數(shù)m的最小值為320、(1)證明見解析(2)證明見解析【解析】【小問1詳解】連接AC,分別是的中點(diǎn),.在中,,所以四點(diǎn)共面.【小問2詳解】,所以,又平面平面,同理平面,為平面與平面的一個(gè)公共點(diǎn).又平面平面,即三點(diǎn)共線.21、(1)(2)【解析】(1)因?yàn)樵跈E圓上,所以,又因?yàn)闄E圓四個(gè)頂點(diǎn)組成的四邊形的面積為,所以,解得,所以橢圓的方程為(2)由(1)可知,設(shè),則當(dāng)時(shí),,所以,直線的方程為,即,由得,則,,,又,所以,由,得,所以,所以,當(dāng),直線,,,,,所以當(dāng)時(shí),.點(diǎn)睛:在圓錐曲線中研究最值或范圍問題時(shí),若題目的條件和結(jié)論能體現(xiàn)一種明確的函數(shù)關(guān)系,則可首先建立目標(biāo)函數(shù),再求這個(gè)函數(shù)的最值.在利用代數(shù)法解決最值與范圍問題時(shí)常從以下方面考慮:①利用判別式來構(gòu)造不等關(guān)系,從而確定參數(shù)的取值范圍;②利用已知參數(shù)的范圍,求新參數(shù)的范圍,解這類問題的關(guān)鍵是在兩個(gè)參數(shù)之間建立等量關(guān)系;③利用隱含或已知的不等關(guān)系建立不等式,從而求出

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論