版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
四川省瀘州外國語學(xué)校2024屆高二數(shù)學(xué)第一學(xué)期期末檢測(cè)試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.如圖,在三棱錐中,平面ABC,,,,則點(diǎn)A到平面PBC的距離為()A.1 B.C. D.2.已知是拋物線的焦點(diǎn),是拋物線的準(zhǔn)線,點(diǎn),連接交拋物線于點(diǎn),,則的面積為()A.4 B.9C. D.3.已知函數(shù)的值域?yàn)?,則實(shí)數(shù)的取值范圍是()A. B.C. D.4.若點(diǎn)P為拋物線y=2x2上的動(dòng)點(diǎn),F(xiàn)為拋物線的焦點(diǎn),則|PF|的最小值為()A.2 B.C. D.5.古希臘數(shù)學(xué)家阿基米德利用“逼近法”得到橢圓的面積除以圓周率等于橢圓的長半軸長與短半軸長的乘積,已知橢圓的面積為,、分別是的兩個(gè)焦點(diǎn),過的直線交于、兩點(diǎn),若的周長為,則的離心率為()A. B.C. D.6.圓與圓的位置關(guān)系是()A.內(nèi)切 B.相交C.外切 D.相離7.人教A版選擇性必修二教材的封面圖案是斐波那契螺旋線,它被譽(yù)為自然界最完美的“黃金螺旋”,自然界存在很多斐波那契螺旋線的圖案,例如向日葵、鸚鵡螺等.斐波那契螺旋線的畫法是:以斐波那契數(shù)1,1,2,3,5,8,…為邊長的正方形拼成長方形,然后在每個(gè)正方形中畫一個(gè)圓心角為90°的圓弧,這些圓弧所連起來的弧線就是斐波那契螺旋線.下圖為該螺旋線在正方形邊長為1,1,2,3,5,8的部分,如圖建立平面直角坐標(biāo)系(規(guī)定小方格的邊長為1),則接下來的一段圓弧所在圓的方程為()A. B.C. D.8.已知函數(shù)有兩個(gè)極值點(diǎn)m,n,且,則的最大值為()A. B.C. D.9.已知橢圓:的左、右焦點(diǎn)分別為、,為坐標(biāo)原點(diǎn),為橢圓上一點(diǎn).與軸交于一點(diǎn),,則橢圓C的離心率為()A. B.C. D.10.已知圓柱的表面積為定值,當(dāng)圓柱的容積最大時(shí),圓柱的高的值為()A.1 B.C. D.211.古希臘數(shù)學(xué)家阿波羅尼斯的著作《圓錐曲線論》是古代世界光輝的科學(xué)成果,它將圓錐曲線的性質(zhì)網(wǎng)羅殆盡,幾乎使后人沒有插足的余地.他證明過這樣一個(gè)命題:平面內(nèi)與兩定點(diǎn)距離的比為常數(shù)且的點(diǎn)的軌跡是圓,后人將之稱為阿波羅尼斯圓.現(xiàn)有橢圓為橢圓長軸的端點(diǎn),為橢圓短軸的端點(diǎn),,分別為橢圓的左右焦點(diǎn),動(dòng)點(diǎn)滿足面積的最大值為面積的最小值為,則橢圓的離心率為()A. B.C. D.12.已知正實(shí)數(shù)x,y滿足4x+3y=4,則的最小值為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.某中學(xué)擬從4月16號(hào)至30號(hào)期間,選擇連續(xù)兩天舉行春季運(yùn)動(dòng)會(huì),從已往的氣象記錄中隨機(jī)抽取一個(gè)年份,記錄天氣結(jié)果如下:日期161718192021222324252627282930天氣晴陰雨陰陰晴陰晴雨雨陰晴晴晴雨估計(jì)運(yùn)動(dòng)會(huì)期間不下雨的概率為_____________.14.有公共焦點(diǎn),的橢圓和雙曲線的離心率分別為,,點(diǎn)為兩曲線的一個(gè)公共點(diǎn),且滿足,則的值為______15.已知拋物線的焦點(diǎn)為,準(zhǔn)線為,過點(diǎn)的直線與拋物線交于A,B兩點(diǎn)(點(diǎn)B在第一象限),與準(zhǔn)線交于點(diǎn)P.若,,則____________.16.底面半徑為1,母線長為2的圓錐的體積為______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓:的離心率為,且經(jīng)過點(diǎn).(1)求的方程;(2)設(shè)的右焦點(diǎn)為F,過F作兩條互相垂直的直線AB和DE,其中A,B,D,E都在橢圓上,求的取值范圍.18.(12分)已知直線過點(diǎn),且被兩條平行直線,截得的線段長為.(1)求的最小值;(2)當(dāng)直線與軸平行時(shí),求的值.19.(12分)已知圓經(jīng)過坐標(biāo)原點(diǎn)和點(diǎn),且圓心在軸上.(1)求圓的方程;(2)已知直線與圓相交于A、B兩點(diǎn),求所得弦長的值.20.(12分)如圖,在直棱柱中,已知,點(diǎn)分別的中點(diǎn).(1)求異面直線與所成的角的大?。唬?)求點(diǎn)到平面的距離;(3)在棱上是否存在一點(diǎn),使得直線與平面所成的角的大小是?若存在,請(qǐng)指出點(diǎn)的位置,若不存在,請(qǐng)說明理由.21.(12分)已知函數(shù)(1)若,求函數(shù)的單調(diào)區(qū)間;(2)若函數(shù)有兩個(gè)不相等的零點(diǎn),證明:22.(10分)已知各項(xiàng)為正數(shù)的等比數(shù)列中,,.(1)求數(shù)列的通項(xiàng)公式;(2)設(shè),求數(shù)列的前n項(xiàng)和.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】設(shè)點(diǎn)A到平面PBC的距離為,根據(jù)等體積法求解即可.【詳解】因?yàn)槠矫鍭BC,所以,因?yàn)?,,所以又,,所?所以,設(shè)點(diǎn)A到平面PBC的距離為,則,即,,故選:A2、D【解析】根據(jù)題意求得拋物線的方程為和焦點(diǎn)為,由,得到為的中點(diǎn),得到,代入拋物線方程,求得,進(jìn)而求得的面積.【詳解】由直線是拋物線的準(zhǔn)線,可得,即,所以拋物線的方程為,其焦點(diǎn)為,因?yàn)椋傻每傻萌c(diǎn)共線,且為的中點(diǎn),又因?yàn)?,,所以,將點(diǎn)代入拋物線,可得,所以的面積為.故選:D.3、D【解析】求出函數(shù)在時(shí)值的集合,函數(shù)在時(shí)值的集合,再由已知并借助集合包含關(guān)系即可作答.【詳解】當(dāng)時(shí),在上單調(diào)遞增,,,則在上值的集合是,當(dāng)時(shí),,,當(dāng)時(shí),,當(dāng)時(shí),,即在上單調(diào)遞減,在上單調(diào)遞增,,,則在上值的集合為,因函數(shù)的值域?yàn)?,于是得,則,解得,所以實(shí)數(shù)的取值范圍是.故選:D4、D【解析】根據(jù)拋物線的定義得出當(dāng)點(diǎn)P在拋物線的頂點(diǎn)時(shí),|PF|取最小值.【詳解】根據(jù)題意,設(shè)拋物線y=2x2上點(diǎn)P到準(zhǔn)線的距離為d,則有|PF|=d,拋物線的方程為y=2x2,即x2=y(tǒng),其準(zhǔn)線方程為y=-,∴當(dāng)點(diǎn)P在拋物線的頂點(diǎn)時(shí),d有最小值,即|PF|min=.故選:D5、A【解析】本題首先可根據(jù)題意得出,然后根據(jù)的周長為得出,最后根據(jù)求出的值,即可求出的離心率.【詳解】因?yàn)闄E圓的面積為,所以長半軸長與短半軸長的乘積,因?yàn)榈闹荛L為,所以根據(jù)橢圓的定義易知,,,,則的離心率,故選:A.6、B【解析】判斷圓心距與兩圓半徑之和、之差關(guān)系即可判斷兩圓位置關(guān)系.【詳解】由得圓心坐標(biāo)為,半徑,由得圓心坐標(biāo)為,半徑,∴,,∴,即兩圓相交.故選:B.7、C【解析】由題意可知圖中每90°的圓弧半徑符合斐波那契數(shù)1,1,2,3,5,8,…,從而可求出下一段圓弧的半徑為13,由于每一個(gè)圓弧為四分之一圓,從而可求出下一段圓弧所以圓的圓心,進(jìn)而可得其方程【詳解】解:由題意可知圖中每90°的圓弧半徑符合斐波那契數(shù)1,1,2,3,5,8,…,從而可求出下一段圓弧的半徑為13,由題意可知下一段圓弧過點(diǎn),因?yàn)槊恳欢螆A弧的圓心角都為90°,所以下一段圓弧所在圓的圓心與點(diǎn)的連線平行于軸,因?yàn)橄乱欢螆A弧半徑為13,所以所求圓的圓心為,所以所求圓的方程為,故選:C8、C【解析】對(duì)求導(dǎo)得,得到m,n是兩個(gè)根,由根與系數(shù)的關(guān)系可得m,n的關(guān)系,然后構(gòu)造函數(shù),利用導(dǎo)數(shù)求單調(diào)性,進(jìn)而得最值.【詳解】由得:m,n是兩個(gè)根,由根與系數(shù)的關(guān)系得:,故,令記,則,故在上單調(diào)遞減.故選:C9、C【解析】由橢圓的性質(zhì)可先求得,故可得,再由橢圓的定義得a,c的關(guān)系,故可得答案【詳解】,,又,,則,,則,,由橢圓的定義得,,,故選:C10、B【解析】設(shè)圓柱的底面半徑為,則圓柱底,圓柱側(cè),則可得,則圓柱的體積為,利用導(dǎo)數(shù)求出最大值,確定值.【詳解】設(shè)圓柱的底面半徑為,則圓柱底,圓柱側(cè),∴,∴,則圓柱的體積,∴,由得,由得,∴當(dāng)時(shí),取極大值,也是最大值,即故選:B【點(diǎn)睛】本題主要考查了圓柱表面積和體積的計(jì)算,考查了導(dǎo)數(shù)的實(shí)際應(yīng)用,考查了學(xué)生的應(yīng)用意識(shí).11、A【解析】由題可得動(dòng)點(diǎn)M的軌跡方程,可得,,即求.【詳解】設(shè),,由,可得=2,化簡(jiǎn)得.∵△MAB面積的最大值為面積的最小值為,∴,,∴,即,∴故選:A12、A【解析】將4x+3y=4變形為含2x+1和3y+2的等式,即2(2x+1)+(3y+2)=8,再由換元法、基本不等式換“1”的代換求解即可【詳解】由正實(shí)數(shù)x,y滿足4x+3y=4,可得2(2x+1)+(3y+2)=8,令a=2x+1,b=3y+2,可得2a+b=8,∴,即,當(dāng)且僅當(dāng)時(shí)取等號(hào),∴的最小值為.故選:A二、填空題:本題共4小題,每小題5分,共20分。13、【解析】以每相鄰兩天為一個(gè)基本事件,求出試驗(yàn)的基本事件數(shù),再求出兩天都不下雨的基本事件數(shù),利用古典概率公式計(jì)算作答.【詳解】依題意,以每相鄰兩天為一個(gè)基本事件,如16號(hào)與17號(hào)、17號(hào)與18號(hào)為不同的兩個(gè)基本事件,則從4月16號(hào)至30號(hào)期間,共有14個(gè)基本事件,它們等可能,其中相鄰兩天不下雨有16與17,19與20,20與21,21與22,22與23,26與27,27與28,28與29,共8個(gè)不同結(jié)果,所以運(yùn)動(dòng)會(huì)期間不下雨的概率為.故答案為:14、4【解析】可設(shè)為第一象限的點(diǎn),,,求出,,化簡(jiǎn)即得解.【詳解】解:可設(shè)為第一象限的點(diǎn),,,由橢圓定義可得,由雙曲線的定義可得,可得,,由,可得,即為,化為,則故答案為:415、【解析】過點(diǎn)作,垂足為,過點(diǎn)作,垂足為,然后根據(jù)拋物線的定義和三角形相似的關(guān)系可求得結(jié)果【詳解】過點(diǎn)作,垂足為,過點(diǎn)作,垂足為,由拋物線的定義可知,,不妨設(shè),因?yàn)?,所以,因?yàn)椤?,所以,即,所以,所以,因?yàn)榕c反向,所以.故答案為:16、【解析】先由勾股定理求圓錐的高,再結(jié)合圓錐的體積公式運(yùn)算即可得解.【詳解】解:設(shè)圓錐的高為,由勾股定理可得,由圓錐的體積可得,故答案為.【點(diǎn)睛】本題考查了圓錐的體積公式,重點(diǎn)考查了勾股定理,屬基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)根據(jù)橢圓的離心率為,及經(jīng)過點(diǎn)建立等式可求解;(2)分斜率存在與不存在兩種情況進(jìn)行討論,當(dāng)斜率存在時(shí),計(jì)算與后再求范圍即可.【小問1詳解】由題意知的離心率為,整理得,又因?yàn)榻?jīng)過點(diǎn),所以,解得,所以,因此,的方程為.小問2詳解】由已知可得,當(dāng)直線AB或DE有一條的斜率不存在時(shí),可得,或,,此時(shí)有或.當(dāng)AB和DE的斜率都存在時(shí)且不為0時(shí),設(shè)直線:,直線:,,,,由得,所以,,所以,用替換可得.所以,綜上所述,的取值范圍為.18、(1)3;(2)5【解析】(1)由題可得和的距離即為的最小值;(2)可得此時(shí)直線的方程為,求出交點(diǎn)坐標(biāo)即可求出距離.【詳解】(1)由題可得當(dāng)且時(shí),取得最小值,即和的距離,由兩平行線間的距離公式,得,所以的最小值為3.(2)當(dāng)直線與軸平行時(shí),方程為,設(shè)直線與直線,分別交于點(diǎn),,則,,所以,即,所以.19、(1);(2).【解析】(1)根據(jù)條件可以確定圓心坐標(biāo)和半徑,寫出圓的方程;(2)先求圓心到直線的距離,結(jié)合勾股定理可求弦長.【詳解】(1)由題意可得,圓心為(2,0),半徑為2.則圓的方程為;(2)圓心(2,0)到l的距離為d,=1,.【點(diǎn)睛】圓的方程求解方法:(1)直接法:確定圓心,求出半徑,寫出方程;(2)待定系數(shù)法:設(shè)出圓的方程,可以是標(biāo)準(zhǔn)方程也可以是一般式方程,根據(jù)條件列出方程,求解系數(shù)即可.20、(1)(2)(3)不存在,理由見解析【解析】(1)由題意,以點(diǎn)A為原點(diǎn),方向分別為x軸、y軸與z軸的正方向,建立空間直角坐標(biāo)系.,利用向量法求解異面直線成角即可.(2)先求出平面DEF的一個(gè)法向量,然后利用向量法求解點(diǎn)面距離.(3)設(shè)(),由可得關(guān)于的方程,從而得出答案.【小問1詳解】由題意,以點(diǎn)A為原點(diǎn),方向分別為x軸、y軸與z軸的正方向,建立空間直角坐標(biāo)系.則,,,,故,,從而,所以異面直線AE與DF所成角的大小為.小問2詳解】,設(shè)平面DEF的法向量為,則,即,取,得到平面DEF的一個(gè)法向量為.點(diǎn)A到平面DEF的距離為.【小問3詳解】假設(shè)存在滿足條件的點(diǎn)M,設(shè)(),則,從而.即,即,此方程無實(shí)數(shù)解,故不存在滿足條件的點(diǎn)M.21、(1)單調(diào)遞增區(qū)間是(4,+∞),單調(diào)遞減區(qū)間是(0,4);(2)證明見解析.【解析】(1)求的導(dǎo)函數(shù),結(jié)合定義域及導(dǎo)數(shù)的符號(hào)確定單調(diào)區(qū)間;(2)法一:討論、時(shí)的零點(diǎn)情況,即可得,構(gòu)造,利用導(dǎo)數(shù)研究在(0,2a)恒成立,結(jié)合單調(diào)性證明不等式;法二:設(shè),由零點(diǎn)可得,進(jìn)而應(yīng)用分析法將結(jié)論轉(zhuǎn)化為證明,綜合換元法、導(dǎo)數(shù)證明結(jié)論即可.【小問1詳解】函數(shù)的定義域?yàn)?0,+∞),當(dāng)a=2時(shí),,則令得,x>4;令得,0<x<4;所以,單調(diào)遞增區(qū)間是(4,+∞);單調(diào)遞減區(qū)間是(0,4).【小問2詳解】法一:當(dāng)a≤0時(shí),>0在(0,+∞)上恒成立,故函數(shù)不可能有兩個(gè)不相等的零點(diǎn),當(dāng)a>0時(shí),函數(shù)在(2a,+∞)上單調(diào)遞增,在(0,2a)上單調(diào)遞減,因?yàn)楹瘮?shù)有兩個(gè)不相等的零點(diǎn),則,不妨設(shè),設(shè),(0<x<2a),則,所以,由a>0知:在(0,2a
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 珠寶服務(wù)采購合同范例
- 手工承包合同范例
- 破碎瓶蓋出售合同范例
- 管網(wǎng)工程居間合同范例
- 外墻保溫轉(zhuǎn)讓合同范例
- 花卉盆栽配送合同范例
- 與政府租地合同范例
- x小產(chǎn)權(quán)購房合同范例
- 網(wǎng)吧投資合同范例
- 保險(xiǎn)公司車輛合同范例
- 論群團(tuán)組織在助推企業(yè)發(fā)展的作用發(fā)揮
- 鄉(xiāng)土中國知識(shí)點(diǎn)匯總 統(tǒng)編版高中語文必修上冊(cè)
- 《電力設(shè)備預(yù)防性試驗(yàn)規(guī)程》
- 高大模板工程安全技術(shù)交底
- 2023年托幼機(jī)構(gòu)幼兒園衛(wèi)生保健人員考試題庫及參考答案
- 工程造價(jià)司法鑒定難點(diǎn)與應(yīng)對(duì)措施
- 牙隱裂牙隱裂
- 辦公樓裝飾裝修改造工程施工組織設(shè)計(jì)方案
- 三色鴿食品廠降壓變電所的電氣設(shè)計(jì)
- YY/T 1181-2021免疫組織化學(xué)試劑盒
- GB/T 6680-2003液體化工產(chǎn)品采樣通則
評(píng)論
0/150
提交評(píng)論