版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
一、解答題1.在平面直角坐標系中,已知線段,點的坐標為,點的坐標為,如圖1所示.(1)平移線段到線段,使點的對應點為,點的對應點為,若點的坐標為,求點的坐標;(2)平移線段到線段,使點在軸的正半軸上,點在第二象限內(與對應,與對應),連接如圖2所示.若表示△BCD的面積),求點、的坐標;(3)在(2)的條件下,在軸上是否存在一點,使表示△PCD的面積)?若存在,求出點的坐標;若不存在,請說明理由.2.已知,.點在上,點在上.(1)如圖1中,、、的數(shù)量關系為:;(不需要證明);如圖2中,、、的數(shù)量關系為:;(不需要證明)(2)如圖3中,平分,平分,且,求的度數(shù);(3)如圖4中,,平分,平分,且,則的大小是否發(fā)生變化,若變化,請說明理由,若不變化,求出么的度數(shù).3.已知AB∥CD,∠ABE與∠CDE的角分線相交于點F.(1)如圖1,若BM、DM分別是∠ABF和∠CDF的角平分線,且∠BED=100°,求∠M的度數(shù);(2)如圖2,若∠ABM=∠ABF,∠CDM=∠CDF,∠BED=α°,求∠M的度數(shù);(3)若∠ABM=∠ABF,∠CDM=∠CDF,請直接寫出∠M與∠BED之間的數(shù)量關系4.如圖,已知直線射線CD,.P是射線EB上一動點,過點P作PQEC交射線CD于點Q,連接CP.作,交直線AB于點F,CG平分.(1)若點P,F(xiàn),G都在點E的右側,求的度數(shù);(2)若點P,F(xiàn),G都在點E的右側,,求的度數(shù);(3)在點P的運動過程中,是否存在這樣的情形,使?若存在,求出的度數(shù);若不存在,請說明理由.5.點A,C,E在直線l上,點B不在直線l上,把線段AB沿直線l向右平移得到線段CD.(1)如圖1,若點E在線段AC上,求證:B+D=BED;(2)若點E不在線段AC上,試猜想并證明B,D,BED之間的等量關系;(3)在(1)的條件下,如圖2所示,過點B作PB//ED,在直線BP,ED之間有點M,使得ABE=EBM,CDE=EDM,同時點F使得ABE=nEBF,CDE=nEDF,其中n≥1,設BMD=m,利用(1)中的結論求BFD的度數(shù)(用含m,n的代數(shù)式表示).6.已知,AB∥CD.點M在AB上,點N在CD上.(1)如圖1中,∠BME、∠E、∠END的數(shù)量關系為:;(不需要證明)如圖2中,∠BMF、∠F、∠FND的數(shù)量關系為:;(不需要證明)(2)如圖3中,NE平分∠FND,MB平分∠FME,且2∠E+∠F=180°,求∠FME的度數(shù);(3)如圖4中,∠BME=60°,EF平分∠MEN,NP平分∠END,且EQ∥NP,則∠FEQ的大小是否發(fā)生變化,若變化,請說明理由,若不變化,求出∠FEQ的度數(shù).7.下列等式:,,,將以上三個等式兩邊分別相加得:.(1)觀察發(fā)現(xiàn):__________.(2)初步應用:利用(1)的結論,解決以下問題“①把拆成兩個分子為1的正的真分數(shù)之差,即;②把拆成兩個分子為1的正的真分數(shù)之和,即;(3)定義“”是一種新的運算,若,,,求的值.8.我們知道,正整數(shù)按照能否被2整除可以分成兩類:正奇數(shù)和正偶數(shù),小華受此啟發(fā),按照一個正整數(shù)被3除的余數(shù)把正整數(shù)分成了三類:如果一個正整數(shù)被3除余數(shù)為1,則這個正整數(shù)屬于A類,例如1,4,7等;如果一個正整數(shù)被3除余數(shù)為2,則這個正整數(shù)屬于B類,例如2,5,8等;如果一個正整數(shù)被3整除,則這個正整數(shù)屬于C類,例如3,6,9等.(1)2020屬于類(填A,B或C);(2)①從A類數(shù)中任取兩個數(shù),則它們的和屬于類(填A,B或C);②從A、B類數(shù)中任取一數(shù),則它們的和屬于類(填A,B或C);③從A類數(shù)中任意取出8個數(shù),從B類數(shù)中任意取出9個數(shù),從C類數(shù)中任意取出10個數(shù),把它們都加起來,則最后的結果屬于類(填A,B或C);(3)從A類數(shù)中任意取出m個數(shù),從B類數(shù)中任意取出n個數(shù),把它們都加起來,若最后的結果屬于C類,則下列關于m,n的敘述中正確的是(填序號).①屬于C類;②屬于A類;③,屬于同一類.9.閱讀下面文字:對于可以如下計算:原式上面這種方法叫拆項法,你看懂了嗎?仿照上面的方法,計算:(1)(2)10.閱讀型綜合題對于實數(shù)我們定義一種新運算(其中均為非零常數(shù)),等式右邊是通常的四則運算,由這種運算得到的數(shù)我們稱之為線性數(shù),記為,其中叫做線性數(shù)的一個數(shù)對.若實數(shù)都取正整數(shù),我們稱這樣的線性數(shù)為正格線性數(shù),這時的叫做正格線性數(shù)的正格數(shù)對.(1)若,則,;(2)已知,.若正格線性數(shù),(其中為整數(shù)),問是否有滿足這樣條件的正格數(shù)對?若有,請找出;若沒有,請說明理由.11.閱讀理解:一個多位數(shù),如果根據(jù)它的位數(shù),可以從左到右分成左、中、右三個數(shù)位相同的整數(shù),其中a代表這個整數(shù)分出來的左邊數(shù),b代表的這個整數(shù)分出來的中間數(shù),c代表這個整數(shù)分出來的右邊數(shù),其中a,b,c數(shù)位相同,若b﹣a=c﹣b,我們稱這個多位數(shù)為等差數(shù).例如:357分成了三個數(shù)3,5,7,并且滿足:5﹣3=7﹣5;413223分成三個數(shù)41,32,23,并且滿足:32﹣41=23﹣32;所以:357和413223都是等差數(shù).(1)判斷:148等差數(shù),514335等差數(shù);(用“是”或“不是”填空)(2)若一個三位數(shù)是等差數(shù),試說明它一定能被3整除;(3)若一個三位數(shù)T是等差數(shù),且T是24的倍數(shù),求該等差數(shù)T.12.如果有一列數(shù),從這列數(shù)的第2個數(shù)開始,每一個數(shù)與它的前一個數(shù)的比等于同一個非零的常數(shù),這樣的一列數(shù)就叫做等比數(shù)列(GeometricSequences).這個常數(shù)叫做等比數(shù)列的公比,通常用字母q表示(q≠0).(1)觀察一個等比列數(shù)1,,…,它的公比q=;如果an(n為正整數(shù))表示這個等比數(shù)列的第n項,那么a18=,an=;(2)如果欲求1+2+4+8+16+…+230的值,可以按照如下步驟進行:令S=1+2+4+8+16+…+230…①等式兩邊同時乘以2,得2S=2+4+8+16++32+…+231…②由②﹣①式,得2S﹣S=231﹣1即(2﹣1)S=231﹣1所以請根據(jù)以上的解答過程,求3+32+33+…+323的值;(3)用由特殊到一般的方法探索:若數(shù)列a1,a2,a3,…,an,從第二項開始每一項與前一項之比的常數(shù)為q,請用含a1,q,n的代數(shù)式表示an;如果這個常數(shù)q≠1,請用含a1,q,n的代數(shù)式表示a1+a2+a3+…+an.13.如圖,已知點,點,且,滿足關系式.(1)求點、的坐標;(2)如圖1,點是線段上的動點,軸于點,軸于點,軸于點,連接、.試探究,之間的數(shù)量關系;(3)如圖2,線段以每秒2個單位長度的速度向左水平移動到線段.若線段交軸于點,當三角形和三角形的面積相等時,求移動時間和點的坐標.14.已知:AB∥CD,截線MN分別交AB、CD于點M、N.(1)如圖①,點B在線段MN上,設∠EBM=α°,∠DNM=β°,且滿足+(β﹣60)2=0,求∠BEM的度數(shù);(2)如圖②,在(1)的條件下,射線DF平分∠CDE,且交線段BE的延長線于點F;請寫出∠DEF與∠CDF之間的數(shù)量關系,并說明理由;(3)如圖③,當點P在射線NT上運動時,∠DCP與∠BMT的平分線交于點Q,則∠Q與∠CPM的比值為(直接寫出答案).15.如圖,在平面直角坐標系中,同時將點A(﹣1,0)、B(3,0)向上平移2個單位長度再向右平移1個單位長度,分別得到A、B的對應點C、D.連接AC,BD(1)求點C、D的坐標,并描出A、B、C、D點,求四邊形ABDC面積;(2)在坐標軸上是否存在點P,連接PA、PC使S△PAC=S四邊形ABCD?若存在,求點P坐標;若不存在,請說明理由.16.某超市投入31500元購進A、B兩種飲料共800箱,飲料的成本與銷售價如下表:(單位:元/箱)類別成本價銷售價A4264B3652(1)該超市購進A、B兩種飲料各多少箱?(2)全部售完800箱飲料共盈利多少元?(3)若超市計劃盈利16200元,且A類飲料售價不變,則B類飲料銷售價至少應定為每箱多少元?17.如圖,在平面直角坐標系中,點的坐標分別是,現(xiàn)同時將點分別向上平移2個單位長度,再向右平移2個單位長度,得到的對應點.連接.(1)寫出點的坐標并求出四邊形的面積.(2)在軸上是否存在一點,使得的面積是面積的2倍?若存在,請求出點的坐標;若不存在,請說明理由.(3)若點是直線上一個動點,連接,當點在直線上運動時,請直接寫出與的數(shù)量關系.18.如圖1,在平面直角坐標系中,點O是坐標原點,邊長為2的正方形ABCD(點D與點O重合)和邊長為4的正方形EFGH的邊CO和GH都在x軸上,且點H坐標為(7,0).正方形ABCD以3個單位長度/秒的速度沿著x軸向右運動,記正方形ABCD和正方形EFGH重疊部分的面積為S,假設運動時間為t秒,且t<4.(1)點F的坐標為;(2)如圖2,正方形ABCD向右運動的同時,動點P在線段FE上,以1個單位長度/秒的速度從F到E運動.連接AP,AE.①求t為何值時,AP所在直線垂直于x軸;②求t為何值時,S=S△APE.19.(1)閱讀下列材料并填空:對于二元一次方程組,我們可以將x,y的系數(shù)和相應的常數(shù)項排成一個數(shù)表,求得的一次方程組的解,用數(shù)表可表示為.用數(shù)表可以簡化表達解一次方程組的過程如下,請補全其中的空白:從而得到該方程組的解為x=,y=.(2)仿照(1)中數(shù)表的書寫格式寫出解方程組的過程.20.已知:用3輛A型車和2輛B型車載滿貨物一次可運貨17噸;用2輛A型車和3輛B型車載滿貨物一次可運貨l8噸,某物流公刊現(xiàn)有35噸貨物,計劃同時租用A型車a輛,B型車b輛,一次運完,且恰好每輛車都載滿貨物.根據(jù)以上信息,解答下列問題:(1)l輛A型車和l輛B型車都載滿貨物一次可分別運貨多少噸?(2)請你幫該物流公司設計租車方案;(3)若A型車每輛需租金200元/次,B型車每輛需租金240元/次,請選出最省錢的租車方案,并求出最少租車費.21.每年的6月5日為世界環(huán)保日,為提倡低碳環(huán)保,某公司決定購買10臺節(jié)省能源的新機器,現(xiàn)有甲、乙兩種型號的機器可選,其中每臺的價格、產(chǎn)量如下表:甲型機器乙型機器價格(萬元/臺)ab產(chǎn)量(噸/月)240180經(jīng)調查:購買一臺甲型機器比購買一臺乙型機器多12萬元,購買2臺甲型機器比購買3臺乙型機器多6萬元.(1)求a、b的值;(2)若該公司購買新機器的資金不超過216萬元,請問該公司有哪幾種購買方案?(3)在(2)的條件下,若公司要求每月的產(chǎn)量不低于1890噸,請你為該公司設計一種最省錢的購買方案.22.某公園的門票價格如下表所示:某中學七年級(1)、(2)兩個班計劃去游覽該公園,其中(I)班的人數(shù)較少,不足50人;(2)班人數(shù)略多,有50多人.如果兩個班都以班為單位分別購票,則一共應付1172元,如果兩個班聯(lián)合起來,作為一個團體購票,則需付1078元.(1)列方程求出兩個班各有多少學生;(2)如果兩個班聯(lián)合起來買票,是否可以買單價為9元的票?你有什么省錢的方法來幫他們買票呢?請給出最省錢的方案.23.李師傅要給-塊長9米,寬7米的長方形地面鋪瓷磚.如圖,現(xiàn)有A和B兩種款式的瓷磚,且A款正方形瓷磚的邊長與B款長方形瓷磚的長相等,B款瓷磚的長大于寬.已知一塊A款瓷磚和-塊B款瓷磚的價格和為140元;3塊A款瓷磚價格和4塊B款瓷磚價格相等.請回答以下問題:(1)分別求出每款瓷磚的單價.(2)若李師傅買兩種瓷磚共花了1000元,且A款瓷磚的數(shù)量比B款多,則兩種瓷磚各買了多少塊?(3)李師傅打算按如下設計圖的規(guī)律進行鋪瓷磚.若A款瓷磚的用量比B款瓷磚的2倍少14塊,且恰好鋪滿地面,則B款瓷磚的長和寬分別為_米(直接寫出答案).24.閱讀材料:關于x,y的二元一次方程ax+by=c有一組整數(shù)解,則方程ax+by=c的全部整數(shù)解可表示為(t為整數(shù)).問題:求方程7x+19y=213的所有正整數(shù)解.小明參考閱讀材料,解決該問題如下:解:該方程一組整數(shù)解為,則全部整數(shù)解可表示為(t為整數(shù)).因為解得.因為t為整數(shù),所以t=0或-1.所以該方程的正整數(shù)解為和.(1)方程3x-5y=11的全部整數(shù)解表示為:(t為整數(shù)),則=;(2)請你參考小明的解題方法,求方程2x+3y=24的全部正整數(shù)解;(3)方程19x+8y=1908的正整數(shù)解有多少組?請直接寫出答案.25.某體育拓展中心的門票每張10元,一次性使用考慮到人們的不同需求,也為了吸引更多的顧客,該拓展中心除保留原來的售票方法外,還推出了一種“購買個人年票”(個人年票從購買日起,可供持票者使用一年)的售票方法.年票分A、B兩類:A類年票每張120元,持票者可不限次進入中心,且無需再購買門票;B類年票每張60元,持票者進入中心時,需再購買門票,每次2元.(1)小麗計劃在一年中花費80元在該中心的門票上,如果只能選擇一種購買門票的方式,她怎樣購票比較合算?(2)小亮每年進入該中心的次數(shù)約20次,他采取哪種購票方式比較合算?(3)小明根據(jù)自己進入拓展中心的次數(shù),購買了A類年票,請問他一年中進入該中心不低于多少次?26.若關于x的方程ax+b=0(a≠0)的解與關于y的方程cy+d=0(c≠0)的解滿足﹣1≤x﹣y≤1,則稱方程ax+b=0(a≠0)與方程cy+d=0(c≠0)是“友好方程”.例如:方程2x﹣1=0的解是x=0.5,方程y﹣1=0的解是y=1,因為﹣1≤x﹣y≤1,方程2x﹣1=0與方程y﹣1=0是“友好方程”.(1)請通過計算判斷方程2x﹣9=5x﹣2與方程5(y﹣1)﹣2(1﹣y)=﹣34﹣2y是不是“友好方程”.(2)若關于x的方程3x﹣3+4(x﹣1)=0與關于y的方程+y=2k+1是“友好方程”,請你求出k的最大值和最小值.27.中國傳統(tǒng)節(jié)日“端午節(jié)”期間,某商場開展了“歡度端午,回饋顧客”的讓利促銷活動,對部分品牌的粽子進行了打折銷售,其中甲品牌粽子打八折,乙品牌粽子打七五折.已知打折前,買6盒甲品牌粽子和3盒乙品牌粽子需660元;打折后,買5盒甲品牌粽子和4盒乙品牌粽子需520元.(1)打折前,每盒甲、乙品牌粽子分別為多少元?(2)在商場讓利促銷活動期間,某敬老院準備購買甲、乙兩種品牌粽子共40盒,總費用不超過2300元,問敬老院最多可購買多少盒乙品牌粽子?28.某地葡萄豐收,準備將已經(jīng)采摘下來的11400公斤葡萄運送杭州,現(xiàn)有甲、乙、丙三種車型共選擇,每輛車運載能力和運費如表表示(假設每輛車均滿載)車型甲乙丙汽車運載量(公斤/輛)600800900汽車運費(元/輛)500600700(1)若全部葡萄都用甲、乙兩種車型來運,需運費8700元,則需甲、乙兩種車型各幾輛?(2)為了節(jié)省運費,現(xiàn)打算用甲、乙、丙三種車型都參與運送,已知它們的總輛數(shù)為15輛,你能分別求出這三種車型的輛數(shù)嗎?怎樣安排運費最???29.如圖,在平面直角坐標系中,,CD//x軸,CD=AB.(1)求點D的坐標:(2)四邊形OCDB的面積四邊形OCDB;(3)在y軸上是否存在點P,使△PAB=四邊形OCDB;若存在,求出點P的坐標,若不存在,請說明理由.30.閱讀以下內容:已知有理數(shù)m,n滿足m+n=3,且求k的值.三位同學分別提出了以下三種不同的解題思路:甲同學:先解關于m,n的方程組,再求k的值;乙同學:將原方程組中的兩個方程相加,再求k的值;丙同學:先解方程組,再求k的值.(1)試選擇其中一名同學的思路,解答此題;(2)在解關于x,y的方程組時,可以用①×7﹣②×3消去未知數(shù)x,也可以用①×2+②×5消去未知數(shù)y.求a和b的值.【參考答案】***試卷處理標記,請不要刪除一、解答題1.(1);(2);(3)存在點,其坐標為或.【分析】(1)利用平移得性質確定出平移得單位和方向;(2)根據(jù)平移得性質,設出平移單位,根據(jù)S△BCD=7(S△BCD建立方程求解,即可);(3)設出點P的坐標,表示出PC用,建立方程求解即可.【詳解】(1)∵B(3,0)平移后的對應點,∴設,∴即線段向左平移5個單位,再向上平移4個單位得到線段∴點平移后的對應點;(2)∵點C在軸上,點D在第二象限,∴線段向左平移3個單位,再向上平移個單位,∴連接,,∴∴;(3)存在設點,∴∵,∴∴,∴∴存在點,其坐標為或.【點睛】本題考查了線段平移的性質,解題的關鍵在利用平移的性質,得到點坐標的關系、圖形面積的關系,根據(jù)面積的關系,從而求出點的坐標.2.(1)∠BME=∠MEN?∠END;∠BMF=∠MFN+∠FND.(2)120°(3)∠FEQ的大小沒發(fā)生變化,∠FEQ=30°.【分析】(1)過E作EHAB,易得EHABCD,根據(jù)平行線的性質可求解;過F作FHAB,易得FHABCD,根據(jù)平行線的性質可求解;(2)根據(jù)(1)的結論及角平分線的定義可得2(∠BME+∠END)+∠BMF?∠FND=180°,可求解∠BMF=60°,進而可求解;(3)根據(jù)平行線的性質及角平分線的定義可推知∠FEQ=∠BME,進而可求解.【詳解】解:(1)過E作EHAB,如圖1,∴∠BME=∠MEH,∵ABCD,∴HECD,∴∠END=∠HEN,∴∠MEN=∠MEH+∠HEN=∠BME+∠END,即∠BME=∠MEN?∠END.如圖2,過F作FHAB,∴∠BMF=∠MFK,∵ABCD,∴FHCD,∴∠FND=∠KFN,∴∠MFN=∠MFK?∠KFN=∠BMF?∠FND,即:∠BMF=∠MFN+∠FND.故答案為∠BME=∠MEN?∠END;∠BMF=∠MFN+∠FND.(2)由(1)得∠BME=∠MEN?∠END;∠BMF=∠MFN+∠FND.∵NE平分∠FND,MB平分∠FME,∴∠FME=∠BME+∠BMF,∠FND=∠FNE+∠END,∵2∠MEN+∠MFN=180°,∴2(∠BME+∠END)+∠BMF?∠FND=180°,∴2∠BME+2∠END+∠BMF?∠FND=180°,即2∠BMF+∠FND+∠BMF?∠FND=180°,解得∠BMF=60°,∴∠FME=2∠BMF=120°;(3)∠FEQ的大小沒發(fā)生變化,∠FEQ=30°.由(1)知:∠MEN=∠BME+∠END,∵EF平分∠MEN,NP平分∠END,∴∠FEN=∠MEN=(∠BME+∠END),∠ENP=∠END,∵EQNP,∴∠NEQ=∠ENP,∴∠FEQ=∠FEN?∠NEQ=(∠BME+∠END)?∠END=∠BME,∵∠BME=60°,∴∠FEQ=×60°=30°.【點睛】本題主要考查平行線的性質及角平分線的定義,作輔助線是解題的關鍵.3.(1)65°;(2);(3)2n∠M+∠BED=360°【分析】(1)首先作EG∥AB,F(xiàn)H∥AB,連結MF,利用平行線的性質可得∠ABE+∠CDE=260°,再利用角平分線的定義得到∠ABF+∠CDF=130°,從而得到∠BFD的度數(shù),再根據(jù)角平分線的定義和三角形外角的性質可求∠M的度數(shù);(2)先由已知得到∠ABE=6∠ABM,∠CDE=6∠CDM,由(1)得∠ABE+∠CDE=360°-∠BED,∠M=∠ABM+∠CDM,等量代換即可求解;(3)由(2)的方法可得到2n∠M+∠BED=360°.【詳解】解:(1)如圖1,作,,連結,,,,,,,,,,和的角平分線相交于,,,、分別是和的角平分線,,,,;(2)如圖1,,,,,與兩個角的角平分線相交于點,,,,,,;(3)由(2)結論可得,,,則.【點睛】本題主要考查了平行線的性質和四邊形的內角和,關鍵在于掌握兩直線平行同位角相等,內錯角相等,同旁內角互補的性質.4.(1)40°;(2)65°;(3)存在,56°或20°【分析】(1)依據(jù)平行線的性質以及角平分線的定義,即可得到∠PCG的度數(shù);(2)依據(jù)平行線的性質以及角平分線的定義,即可得到∠ECG=∠GCF=25°,再根據(jù)PQ∥CE,即可得出∠CPQ=∠ECP=65°;(3)設∠EGC=4x,∠EFC=3x,則∠GCF=4x-3x=x,分兩種情況討論:①當點G、F在點E的右側時,②當點G、F在點E的左側時,依據(jù)等量關系列方程求解即可.【詳解】解:(1)∵∠CEB=100°,AB∥CD,∴∠ECQ=80°,∵∠PCF=∠PCQ,CG平分∠ECF,∴∠PCG=∠PCF+∠FCG=∠QCF+∠FCE=∠ECQ=40°;(2)∵AB∥CD∴∠QCG=∠EGC,∠QCG+∠ECG=∠ECQ=80°,∴∠EGC+∠ECG=80°,又∵∠EGC-∠ECG=30°,∴∠EGC=55°,∠ECG=25°,∴∠ECG=∠GCF=25°,∠PCF=∠PCQ=(80°-50°)=15°,∵PQ∥CE,∴∠CPQ=∠ECP=65°;(3)設∠EGC=4x,∠EFC=3x,則∠GCF=∠FCD=4x-3x=x,①當點G、F在點E的右側時,則∠ECG=x,∠PCF=∠PCD=x,∵∠ECD=80°,∴x+x+x+x=80°,解得x=16°,∴∠CPQ=∠ECP=x+x+x=56°;②當點G、F在點E的左側時,則∠ECG=∠GCF=x,∵∠CGF=180°-4x,∠GCQ=80°+x,∴180°-4x=80°+x,解得x=20°,∴∠FCQ=∠ECF+∠ECQ=40°+80°=120°,∴∠PCQ=∠FCQ=60°,∴∠CPQ=∠ECP=80°-60°=20°.【點睛】本題主要考查了平行線的性質,解題時注意:兩直線平行,同旁內角互補;兩直線平行,內錯角相等.5.(1)見解析;(2)當點E在CA的延長線上時,∠BED=∠D-∠B;當點E在AC的延長線上時,∠BED=∠BET-∠DET=∠B-∠D;(3)【分析】(1)如圖1中,過點E作ET∥AB.利用平行線的性質解決問題.(2)分兩種情形:如圖2-1中,當點E在CA的延長線上時,如圖2-2中,當點E在AC的延長線上時,構造平行線,利用平行線的性質求解即可.(3)利用(1)中結論,可得∠BMD=∠ABM+∠CDM,∠BFD=∠ABF+∠CDF,由此解決問題即可.【詳解】解:(1)證明:如圖1中,過點E作ET∥AB.由平移可得AB∥CD,∵AB∥ET,AB∥CD,∴ET∥CD∥AB,∴∠B=∠BET,∠TED=∠D,∴∠BED=∠BET+∠DET=∠B+∠D.(2)如圖2-1中,當點E在CA的延長線上時,過點E作ET∥AB.∵AB∥ET,AB∥CD,∴ET∥CD∥AB,∴∠B=∠BET,∠TED=∠D,∴∠BED=∠DET-∠BET=∠D-∠B.如圖2-2中,當點E在AC的延長線上時,過點E作ET∥AB.∵AB∥ET,AB∥CD,∴ET∥CD∥AB,∴∠B=∠BET,∠TED=∠D,∴∠BED=∠BET-∠DET=∠B-∠D.(3)如圖,設∠ABE=∠EBM=x,∠CDE=∠EDM=y,∵AB∥CD,∴∠BMD=∠ABM+∠CDM,∴m=2x+2y,∴x+y=m,∵∠BFD=∠ABF+∠CDF,∠ABE=n∠EBF,∠CDE=n∠EDF,∴∠BFD===.【點睛】本題屬于幾何變換綜合題,考查了平行線的性質,角平分線的定義等知識,解題的關鍵是學會條件常用輔助線,構造平行線解決問題,屬于中考常考題型.6.(1)∠BME=∠MEN﹣∠END;∠BMF=∠MFN+∠FND;(2)120°;(3)不變,30°【分析】(1)過E作EH∥AB,易得EH∥AB∥CD,根據(jù)平行線的性質可求解;過F作FH∥AB,易得FH∥AB∥CD,根據(jù)平行線的性質可求解;(2)根據(jù)(1)的結論及角平分線的定義可得2(∠BME+∠END)+∠BMF-∠FND=180°,可求解∠BMF=60°,進而可求解;(3)根據(jù)平行線的性質及角平分線的定義可推知∠FEQ=∠BME,進而可求解.【詳解】解:(1)過E作EH∥AB,如圖1,∴∠BME=∠MEH,∵AB∥CD,∴HE∥CD,∴∠END=∠HEN,∴∠MEN=∠MEH+∠HEN=∠BME+∠END,即∠BME=∠MEN﹣∠END.如圖2,過F作FH∥AB,∴∠BMF=∠MFK,∵AB∥CD,∴FH∥CD,∴∠FND=∠KFN,∴∠MFN=∠MFK﹣∠KFN=∠BMF﹣∠FND,即:∠BMF=∠MFN+∠FND.故答案為∠BME=∠MEN﹣∠END;∠BMF=∠MFN+∠FND.(2)由(1)得∠BME=∠MEN﹣∠END;∠BMF=∠MFN+∠FND.∵NE平分∠FND,MB平分∠FME,∴∠FME=∠BME+∠BMF,∠FND=∠FNE+∠END,∵2∠MEN+∠MFN=180°,∴2(∠BME+∠END)+∠BMF﹣∠FND=180°,∴2∠BME+2∠END+∠BMF﹣∠FND=180°,即2∠BMF+∠FND+∠BMF﹣∠FND=180°,解得∠BMF=60°,∴∠FME=2∠BMF=120°;(3)∠FEQ的大小沒發(fā)生變化,∠FEQ=30°.由(1)知:∠MEN=∠BME+∠END,∵EF平分∠MEN,NP平分∠END,∴∠FEN=∠MEN=(∠BME+∠END),∠ENP=∠END,∵EQ∥NP,∴∠NEQ=∠ENP,∴∠FEQ=∠FEN﹣∠NEQ=(∠BME+∠END)﹣∠END=∠BME,∵∠BME=60°,∴∠FEQ=×60°=30°.【點睛】本題主要考查平行線的性質及角平分線的定義,作平行線的輔助線是解題的關鍵.7.(1);;(2)①;②;(3).【分析】(1)利用材料中的“拆項法”解答即可;(2)①先變形為,再利用(1)中的規(guī)律解題;②先變形為,再逆用分數(shù)的加法法則即可分解;(3)按照定義“”法則表示出,再利用(1)中的規(guī)律解題即可.【詳解】解:(1)觀察發(fā)現(xiàn):,===;故答案是:;.(2)初步應用:①=;②;故答案是:;.(3)由定義可知:====.故的值為.【點睛】考查了有理數(shù)運算中的規(guī)律型問題:數(shù)字的變化規(guī)律,有理數(shù)的混合運算.本題是一道找規(guī)律的題目,要求學生通過觀察,分析、歸納發(fā)現(xiàn)其中的規(guī)律,并應用發(fā)現(xiàn)的規(guī)律解決問題.8.(1)A;(2)①B;②C;③B;(3)①③.【分析】(1)計算,結合計算結果即可進行判斷;(2)①從A類數(shù)中任取兩個數(shù)進行計算,即可求解;②從A、B兩類數(shù)中任取兩個數(shù)進行計算,即可求解;③根據(jù)題意,從A類數(shù)中任意取出8個數(shù),從B類數(shù)中任意取出9個數(shù),從C類數(shù)中任意取出10個數(shù),把它們的余數(shù)相加,再除以3,即可得到答案;(3)根據(jù)m,n的余數(shù)之和,舉例,觀察即可判斷.【詳解】解:(1)根據(jù)題意,∵,∴2020被3除余數(shù)為1,屬于A類;故答案為:A.(2)①從A類數(shù)中任取兩個數(shù),如:(1+4)÷3=1…2,(4+7)÷3=3…2,……∴兩個A類數(shù)的和被3除余數(shù)為2,則它們的和屬于B類;②從A、B類數(shù)中任取一數(shù),與①同理,如:(1+2)÷3=1,(1+5)÷3=2,(4+5)÷3=3,……∴從A、B類數(shù)中任取一數(shù),則它們的和屬于C類;③從A類數(shù)中任意取出8個數(shù),從B類數(shù)中任意取出9個數(shù),從C類數(shù)中任意取出10個數(shù),把它們的余數(shù)相加,則,∴,∴余數(shù)為2,屬于B類;故答案為:①B;②C;③B.(3)從A類數(shù)中任意取出m個數(shù),從B類數(shù)中任意取出n個數(shù),余數(shù)之和為:m×1+n×2=m+2n,∵最后的結果屬于C類,∴m+2n能被3整除,即m+2n屬于C類,①正確;②若m=1,n=1,則|mn|=0,不屬于B類,②錯誤;③觀察可發(fā)現(xiàn)若m+2n屬于C類,m,n必須是同一類,③正確;綜上,①③正確.故答案為:①③.【點睛】本題考查了新定義的應用和有理數(shù)的除法,解題的關鍵是熟練掌握新定義進行解答.9.(1)(2)【分析】(1)根據(jù)例子將每項的整數(shù)部分相加,分數(shù)部分相加即可解答;(2)根據(jù)例子將每項的整數(shù)部分相加,分數(shù)部分相加即可解答.【詳解】(1)(2)原式【點睛】此題考察新計算方法,正確理解題意是解題的關鍵,根據(jù)例子即可仿照計算.10.(1)5,3;(2)有正格數(shù)對,正格數(shù)對為【分析】(1)根據(jù)定義,直接代入求解即可;(2)將代入求出b的值,再將代入,表示出kx,再根據(jù)題干分析即可.【詳解】解:(1)∵∴5,3故答案為:5,3;(2)有正格數(shù)對.將代入,得出,,解得,,∴,則∴∵,為正整數(shù)且為整數(shù)∴,,,∴正格數(shù)對為:.【點睛】本題考查的知識點是實數(shù)的運算,理解新定義是解此題的關鍵.11.(1)不是,是;(2)見解析;(3)432或456或840或864或888【分析】(1)根據(jù)等差數(shù)的定義判定即可;(2)設這個三位數(shù)是M,,根據(jù)等差數(shù)的定義可知,進而得出即可.(3)根據(jù)等差數(shù)的定義以及24的倍數(shù)的數(shù)的特征可先求出a的值,再根據(jù)是8的倍數(shù)可確定c的值,又因為,所以可確定a、c為偶數(shù)時b才可取整數(shù)有意義,排除不符合條件的a、c值,再將符合條件的a、c代入求出b的值,即可求解.【詳解】解:(1)∵,∴148不是等差數(shù),∵,∴514335是等差數(shù);(2)設這個三位數(shù)是M,,∵,∴,∵,∴這個等差數(shù)是3的倍數(shù);(3)由(2)知,∵T是24的倍數(shù),∴是8的倍數(shù),∵2c是偶數(shù),∴只有當35a也是偶數(shù)時才有可能是8的倍數(shù),∴或4或6或8,當時,,此時若,則,若,則,若,則,大于70又是8的倍數(shù)的最小數(shù)是72,之后是80,88當時不符合題意;當時,,此時若,則,若,則,(144、152是8的倍數(shù)),當時,,此時若,則,若,則,(216、244是8的倍數(shù)),當時,,此時若,則,若,則,若,則,(280,288,296是8的倍數(shù)),∵,∴若a是偶數(shù),則c也是偶數(shù)時b才有意義,∴和是c是奇數(shù)均不符合題意,當時,,當時,,當時,,當時,,當時,,綜上,T為432或456或840或864或888.【點睛】本題考查新定義下的實數(shù)運算、有理數(shù)混合運算,整式的加減運算,能夠結合倍數(shù)的特點及熟練掌握整數(shù)的奇偶性是解題關鍵.12.(1),,;(2);(3)【分析】(1)÷1即可求出q,根據(jù)已知數(shù)的特點求出a18和an即可;(2)根據(jù)已知先求出3S,再相減,即可得出答案;(3)根據(jù)(1)(2)的結果得出規(guī)律即可.【詳解】解:(1)÷1=,a18=1×()17=,an=1×()n﹣1=,故答案為:,,;(2)設S=3+32+33+…+323,則3S=32+33+…+323+324,∴2S=324﹣3,∴S=(3)an=a1?qn﹣1,a1+a2+a3+…+an=.【點睛】本題考查了整式的混合運算的應用,主要考查學生的理解能力和閱讀能力,題目是一道比較好的題目,有一定的難度.13.(1);(2);(3),點C的坐標為【分析】(1)由題意易得,然后可求a、b的值,進而問題可求解;(2)由(1)及題意易得,然后根據(jù)建立方程求解即可;(3)分別過點作軸于點P,軸于點Q,由題意易得,然后可得,進而可求t的值,最后根據(jù)(2)可得三角形的面積為3,則問題可求解.【詳解】解:(1)∵,∴,∴,∴點,點;(2)由(1)可得點,點,∵軸于點,軸于點,軸于點,∴,,∵,∴,∵,且,∴,化簡得;(3)分別過點作軸于點P,軸于點Q,如圖所示:∵線段以每秒2個單位長度的速度向左水平移動到線段,時間為,∴,∵三角形和三角形的面積相等,∴,∴,∴,解得:,∴,由(2)可得三角形的面積為,∴三角形的面積為3,即,∴,∴.【點睛】本題主要考查圖形與坐標、算術平方根與偶次冪的非負性及等積法,熟練掌握圖形與坐標、算術平方根與偶次冪的非負性及等積法是解題的關鍵.14.(1)30°;(2)∠DEF+2∠CDF=150°,理由見解析;(3)【分析】(1)由非負性可求α,β的值,由平行線的性質和外角性質可求解;(2)過點E作直線EH∥AB,由角平分線的性質和平行線的性質可求∠DEF=180°﹣30°﹣2x°=150°﹣2x°,由角的數(shù)量可求解;(3)由平行線的性質和外角性質可求∠PMB=2∠Q+∠PCD,∠CPM=2∠Q,即可求解.【詳解】解:(1)∵+(β﹣60)2=0,∴α=30,β=60,∵AB∥CD,∴∠AMN=∠MND=60°,∵∠AMN=∠B+∠BEM=60°,∴∠BEM=60°﹣30°=30°;(2)∠DEF+2∠CDF=150°.理由如下:過點E作直線EH∥AB,∵DF平分∠CDE,∴設∠CDF=∠EDF=x°;∵EH∥AB,∴∠DEH=∠EDC=2x°,∴∠DEF=180°﹣30°﹣2x°=150°﹣2x°;∴∠DEF=150°﹣2∠CDF,即∠DEF+2∠CDF=150°;(3)如圖3,設MQ與CD交于點E,∵MQ平分∠BMT,QC平分∠DCP,∴∠BMT=2∠PMQ,∠DCP=2∠DCQ,∵AB∥CD,∴∠BME=∠MEC,∠BMP=∠PND,∵∠MEC=∠Q+∠DCQ,∴2∠MEC=2∠Q+2∠DCQ,∴∠PMB=2∠Q+∠PCD,∵∠PND=∠PCD+∠CPM=∠PMB,∴∠CPM=2∠Q,∴∠Q與∠CPM的比值為,故答案為:.【點睛】本題主要考查了平行線的性質、角平分線的性質,準確計算是解題的關鍵.15.(1)(0,2),(4,2),見解析,ABDC面積:8;(2)存在,P的坐標為(7,0)或(﹣9,0)或(0,18)或(0,﹣14).【解析】【分析】(1)根據(jù)向右平移橫坐標加,向上平移縱坐標加寫出點C、D的坐標即可,再根據(jù)平行四邊形的面積公式列式計算即可得解;(2)分點P在x軸和y軸上兩種情況,依據(jù)S△PAC=S四邊形ABCD求解可得.【詳解】(1)由題意知點C坐標為(﹣1+1,0+2),即(0,2),點D的坐標為(3+1,0+2),即(4,2),如圖所示,S四邊形ABDC=2×4=8;(2)當P在x軸上時,∵S△PAC=S四邊形ABCD,∴,∵OC=2,∴AP=8,∴點P的坐標為(7,0)或(﹣9,0);當P在y軸上時,∵S△PAC=S四邊形ABCD,∴,∵OA=1,∴CP=16,∴點P的坐標為(0,18)或(0,﹣14);綜上,點P的坐標為(7,0)或(﹣9,0)或(0,18)或(0,﹣14).【點睛】本題考查了坐標與圖形性質,三角形的面積,坐標與圖形變化﹣平移,熟記各性質是解題的關鍵.16.(1)購進A型飲料450箱,購進B型飲料350箱;(2)全部售完800箱飲料共盈利15500元;(3)B類飲料銷售價至少定為每箱54元【分析】(1)設購進A型飲料x箱,購進B型飲料y箱,根據(jù)題意列出方程組解答即可;(2)根據(jù)利潤的公式解答即可;(3)設B類飲料銷售價定為每箱a元,根據(jù)題意列出不等式解答即可.【詳解】解:(1)設購進A型飲料x箱,購進B型飲料y箱,根據(jù)題意得解得答:購進A型飲料450箱,購進B型飲料350箱.(2)(64﹣42)×450+(52﹣36)×350=15500(元)答:全部售完800箱飲料共盈利15500元;(3)設B類飲料銷售價定為每箱a元,根據(jù)題意得(64﹣42)×450+(a﹣36)×350≥16200解得a≥54答:B類飲料銷售價至少定為每箱54元.【點睛】本題考查了二元一次方程組的應用以及一元一次不等式的應用,解題的關鍵是根據(jù)數(shù)量關系列出方程(方程組、不等式或不等式組).17.(1)點,點;12;(2)存在,點的坐標為和;(3)∠OFC=∠FOB-∠FCD,見解析.【解析】【分析】(1)根據(jù)點平移的規(guī)律易得點C的坐標為(0,2),點D的坐標為(6,2);(2)設點E的坐標為(x,0),根據(jù)△DEC的面積是△DEB面積的2倍和三角形面積公式得到,解得x=1或x=7,然后寫出點E的坐標;(3)分類討論:當點F在線段BD上,作FM∥AB,根據(jù)平行線的性質由MF∥AB得∠2=∠FOB,由CD∥AB得到CD∥MF,則∠1=∠FCD,所以∠OFC=∠FOB+∠FCD;同樣得到當點F在線段DB的延長線上,∠OFC=∠FCD-∠FOB;當點F在線段BD的延長線上,得到∠OFC=∠FOB-∠FCD.【詳解】解:(1)∵點A,B的坐標分別是(-2,0),(4,0),現(xiàn)同時將點A、B分別向上平移2個單位長度,再向右平移2個單位長度得到A,B的對應點C,D,∴點C的坐標為(0,2),點D的坐標為(6,2);四邊形ABDC的面積=2×(4+2)=12;(2)存在.設點E的坐標為(x,0),∵△DEC的面積是△DEB面積的2倍,,解得x=1或x=7,∴點E的坐標為(1,0)和(7,0);(3)當點F在線段BD上,作FM∥AB,如圖1,∵MF∥AB,∴∠2=∠FOB,∵CD∥AB,∴CD∥MF,∴∠1=∠FCD,∴∠OFC=∠1+∠2=∠FOB+∠FCD;當點F在線段DB的延長線上,作FN∥AB,如圖2,∵FN∥AB,∴∠NFO=∠FOB,∵CD∥AB,∴CD∥FN,∴∠NFC=∠FCD,∴∠OFC=∠NFC-∠NFO=∠FCD-∠FOB;同樣得到當點F在線段BD的延長線上,得到∠OFC=∠FOB-∠FCD.【點睛】本題考查了坐標與圖形性質:利用點的坐標得到線段的長和線段與坐標軸的關系.也考查了平行線的性質和分類討論的思想.18.(1)(3,4);(2)①t=時,AP所在直線垂直于x軸;②當t為或時,S=S△APE.【分析】(1)根據(jù)直角坐標系得出點F的坐標即可;(2)①根據(jù)AP所在直線垂直于x軸,得出關于t的方程,解答即可;②分和兩種情況,利用面積公式列出方程即可求解.【詳解】(1)由直角坐標系可得:F坐標為:(3,4);故答案為:(3,4);(2)①要使AP所在直線垂直于x軸.如圖1,只需要Px=Ax,則t+3=3t,解得:,所以即時,AP所在直線垂直于x軸;②由題意知,OH=7,所以當時,點D與點H重合,所以要分以下兩種情況討論:情況一:當時,GD=3t﹣3,PF=t,PE=4﹣t,∵S=S△APE,∴BC×GD=,即:2×(3t﹣3)=,解得:;情況二:當時,如圖2,HD=3t﹣7,PF=t,PE=4﹣t,∵S=S△APE,∴BC×CH=,即:2×[2﹣(3t﹣7)]=,解得:,綜上所述,當t為或時,S=S△APE.【點睛】本題考查了平面直角坐標系中點的移動,一元一次方程的應用等問題,理解題意,分類討論是解題關鍵.19.(1)6,10;(2)?!窘馕觥俊痉治觥浚?)下行-上行后將下行除以3將的系數(shù)化為1即可得方程組的解;(2)類比(1)中方法通過加減法將、的系數(shù)化為1可得.【詳解】解:(1)下行﹣上行,,故答案為:6,10;(2)所以方程組的解為.【點睛】本題主要考查矩陣法解二元一次方程組,熟練掌握加減消元法解二元一次方程組是解題的關鍵.20.(1)A型車、B型車都裝滿貨物一次可以分別運貨3噸、4噸;(2)最省錢的租車方案是方案一:A型車8輛,B型車2輛,最少租車費為2080元.【分析】(1)設每輛A型車、B型車都裝滿貨物一次可以分別運貨x噸、y噸,根據(jù)題目中的等量關系:用3輛A型車和2輛B型車載滿貨物一次可運貨17噸;用2輛A型車和3輛B型車載滿貨物一次可運貨l8噸,列方程組求解即可;(2)由題意得出3a+4b=35,然后由a、b為整數(shù)解,得到三中租車方案;(3)根據(jù)(2)中的所求方案,利用A型車每輛需租金200元/次,B型車每輛需租金240元/次,分別求出租車費用即可.【詳解】解:(1)設每輛A型車、B型車都裝滿貨物一次可以分別運貨x噸、y噸,依題意列方程組為:解得答:1輛A型車輛裝滿貨物一次可運3噸,1輛B型車裝滿貨物一次可運4噸.(2)結合題意,和(1)可得3a+4b=35∴a=∵a、b都是整數(shù)∴或或答:有3種租車方案:方案一:A型車9輛,B型車2輛;方案二:A型車5輛,B型車5輛;方案三:A型車1輛,B型車8輛.(3)∵A型車每輛需租金200元/次,B型車每輛需租金240元/次,∴方案一需租金:9×200+2×240=2280(元)方案二需租金:5×200+5×240=2200(元)方案三需租金:1×200+8×240=2120(元)∵2280>2200>2120∴最省錢的租車方案是方案一:A型車1輛,B型車8輛,最少租車費為2120元.【點睛】此題主要考查了二元一次方程組以及二元一次方程的解法,關鍵是明確二元一次方程有無數(shù)解,但在解與實際問題有關的二元一次方程組時,要結合未知數(shù)的實際意義求解.21.(1);(2)有4種方案:3臺甲種機器,7臺乙種機器;2臺甲種機器,8臺乙種機器;1臺甲種機器,9臺乙種機器;10臺乙種機器.(3)最省錢的方案是購買2臺甲種機器,8臺乙種機器.【分析】(1)根據(jù)購買一臺甲型機器比購買一臺乙型機器多12萬元,購買2臺甲型機器比購買3臺乙型機器多6萬元這一條件建立一元二次方程組求解即可,(2)設買了x臺甲種機器,根據(jù)該公司購買新機器的資金不超過216萬元,建立一次不等式求解即可,(3)將兩種機器生產(chǎn)的產(chǎn)量相加,使總產(chǎn)量不低于1890噸,求出x的取值范圍,再分別求出對應的成本即可解題.【詳解】(1)解:由題意得,解得,;(2)解:設買了x臺甲種機器由題意得:30+18(10-x)≤216解得:x≤3∵x為非負整數(shù)∴x=0、1、2、3∴有4種方案:3臺甲種機器,7臺乙種機器;2臺甲種機器,8臺乙種機器;1臺甲種機器,9臺乙種機器;10臺乙種機器.(3)解:由題意得:240+180(10-x)≥1890解得:x≥1.5∴1.5≤x≤3∴整數(shù)x=2或3當x=2時購買費用=30×2+18×8=204(元)當x=3時購買費用=30×3+18×7=216(元)∴最省錢的方案是購買2臺甲種機器,8臺乙種機器.【點睛】本題考查了利潤的實際應用,二元一次方程租的實際應用,一元一次不等式的實際應用,難度較大,認真審題,找到等量關系和不等關系并建立方程組和不等式組是解題關鍵.22.(1)七(1)班有47人,七(2)班有51人;(2)如果兩個班聯(lián)合起來買票,不可以買單價為9元的票,省錢的方法,可以買101張票,多余的作廢即可【解析】【分析】(1)由兩個班聯(lián)合起來,作為一個團體購票,則需付1078元可知:可得票價不是9元,所以兩個班的總人數(shù)沒有超過100人,設七(1)班有x人,七(2)班有y人,可列方程組,解方程組即可得答案;(2)如果兩班聯(lián)合起來作為一個團體購票,則每張票11元,省錢的方法,可以買101張票,多余的作廢即可?!驹斀狻拷猓海?)∵兩個班聯(lián)合起來,作為一個團體購票,則需付1078元有∵可得票價不是9元,所以兩個班的總人數(shù)沒有超過100人,∴設七(1)班有x人,七(2)班有y人,依題意得:∴七(1)班有47人,七(2)班有51人(2)因為47+51=98<100∴如果兩個班聯(lián)合起來買票,不可以買單價為9元的票∴省錢的方法,可以買101張票,多余的作廢即可??墒。骸军c睛】熟練掌握二元一次方程組的實際問題是解題的關鍵。23.(1)A款瓷磚單價為80元,B款單價為60元.(2)買了11塊A款瓷磚,2塊B款;或8塊A款瓷磚,6塊B款.(3)B款瓷磚的長和寬分別為1,或1,.【分析】(1)設A款瓷磚單價x元,B款單價y元,根據(jù)“一塊A款瓷磚和一塊B款瓷磚的價格和為140元;3塊A款瓷磚價格和4塊B款瓷磚價格相等”列出二元一次方程組,求解即可;(2)設A款買了m塊,B款買了n塊,且m>n,根據(jù)共花1000元列出二元一次方程,求出符合題意的整數(shù)解即可;(3)設A款正方形瓷磚邊長為a米,B款長為a米,寬b米,根據(jù)圖形以及“A款瓷磚的用量比B款瓷磚的2倍少14塊”可列出方程求出a的值,然后由是正整教分情況求出b的值.【詳解】解:(1)設A款瓷磚單價x元,B款單價y元,則有,解得,答:A款瓷磚單價為80元,B款單價為60元;(2)設A款買了m塊,B款買了n塊,且m>n,則80m+60n=1000,即4m+3n=50∵m,n為正整數(shù),且m>n∴m=11時n=2;m=8時,n=6,答:買了11塊A款瓷磚,2塊B款瓷磚或8塊A款瓷磚,6塊B款瓷磚;(3)設A款正方形瓷磚邊長為a米,B款長為a米,寬b米.由題意得:,解得a=1.由題可知,是正整教.設(k為正整數(shù)),變形得到,當k=1時,,故合去),當k=2時,,故舍去),當k=3時,,當k=4時,,答:B款瓷磚的長和寬分別為1,或1,.【點睛】本題主要考查了二元一次方程組的實際應用,(1)(2)較為簡單,(3)中利用數(shù)形結合的思想,找出其中兩款瓷磚的數(shù)量與圖形之間的規(guī)律是解題的關鍵.24.(1)-1;(2)t=-2,-1,0,1;(3)13組【分析】(1)把x=2代入方程3x-5y=11得,求得y的值,即可求得θ的值;(2)參考小明的解題方法求解即可;(3)參考小明的解題方法求解后,即可得到結論.【詳解】解:(1)把x=2代入方程3x-5y=11得,6-6y=11,解得y=-1,∵方程3x-5y=11的全部整數(shù)解表示為:(t為整數(shù)),則θ=-1,故答案為-1;(2)方程2x+3y=24一組整數(shù)解為,則全部整數(shù)解可表示為(t為整數(shù)).因為,解得-3<t<2.因為t為整數(shù),所以t=-2,-1,0,1.(3)方程19x+8y=1908一組整數(shù)解為,則全部整數(shù)解可表示為(t為整數(shù)).∵,解得<t<12.5.因為t為整數(shù),所以t=0,1,2,3,4,5,67,8,9,10,11,12,∴方程19x+8y=1908的正整數(shù)解有13組.【點睛】本題考查了二元一次方程的解,一元一次不等式的整數(shù)解,理解題意、掌握解題方法是本題的關鍵.25.(1)應該購買B類年票,理由見解析;(2)應該購買B類年票,理由見解析;(3)小明一年中進入拓展中心不低于30次【分析】(1)因為80元小于120元,故無法購買A類年票,繼而分別討論直接購票與購買B類年票,這兩種方式何者次數(shù)更多即可.(2)本題根據(jù)進入中心的次數(shù),分別計算小亮直接購票、購買A類年票、購買B類年票所消費的總金額,最后比較總花費大小即可.(3)小明選擇購買A類年票,說明A類年票更為劃算,故需滿足直接購票與購買B類年票所花費的金額不低于120元,最后列不等式求解即可.【詳解】(1)由于預算限制,小麗不可能買A類年票;若直接購票,可以進中心次;若購買B類年票,可進中心次,所以應該購買B類年票.(2)若直接購買門票,需花費元;若購買A類年票,需花費120元;若購買B類年票,需花費元;所以應該購買B類年票.(3)設小明每年進拓展中心約x次,根據(jù)題意列出不等式組:,解得,故.所以小明一年中進入拓展中心不低于30次.【點睛】本題考查實際問題以及不等式,解題關鍵在于對題目的理解,此類型題目需要分類討論做對比,其次需要從實際問題背景抽離數(shù)學關系,最后注意
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度律師事務所專業(yè)復印機及法律文件管理系統(tǒng)采購合同3篇
- 二零二五年度禽類養(yǎng)殖標準化示范項目禽類采購合同3篇
- 二零二五年度電子商務大賽賽事知識產(chǎn)權保護與侵權處理合同3篇
- 2024種植業(yè)務戰(zhàn)略合作伙伴合同樣本版B版
- 二零二五版高端石材采購與安裝服務合同3篇
- 二零二五年度車隊車輛租賃與售后服務合同2篇
- 2024藥品采購及冷鏈物流服務保障協(xié)議3篇
- 2025年度校園食堂廚房設備采購與安裝綜合服務合同2篇
- 2025年度拍賣合同信息安全與隱私保護
- 2025年度智能穿戴設備銷售合同協(xié)議4篇
- 2024年工程咨詢服務承諾書
- 青桔單車保險合同條例
- 車輛使用不過戶免責協(xié)議書范文范本
- 《獅子王》電影賞析
- 2023-2024學年天津市部分區(qū)九年級(上)期末物理試卷
- DB13-T 5673-2023 公路自愈合瀝青混合料薄層超薄層罩面施工技術規(guī)范
- 河北省保定市定州市2025屆高二數(shù)學第一學期期末監(jiān)測試題含解析
- 哈爾濱研學旅行課程設計
- 2024 smart汽車品牌用戶社區(qū)運營全案
- 中醫(yī)護理人文
- 2024-2030年中國路亞用品市場銷售模式與競爭前景分析報告
評論
0/150
提交評論