上海市黃浦區(qū)格致中學2023年高二上數(shù)學期末質(zhì)量跟蹤監(jiān)視試題含解析_第1頁
上海市黃浦區(qū)格致中學2023年高二上數(shù)學期末質(zhì)量跟蹤監(jiān)視試題含解析_第2頁
上海市黃浦區(qū)格致中學2023年高二上數(shù)學期末質(zhì)量跟蹤監(jiān)視試題含解析_第3頁
上海市黃浦區(qū)格致中學2023年高二上數(shù)學期末質(zhì)量跟蹤監(jiān)視試題含解析_第4頁
上海市黃浦區(qū)格致中學2023年高二上數(shù)學期末質(zhì)量跟蹤監(jiān)視試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

上海市黃浦區(qū)格致中學2023年高二上數(shù)學期末質(zhì)量跟蹤監(jiān)視試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.19世紀法國著名數(shù)學家加斯帕爾·蒙日,創(chuàng)立了畫法幾何學,推動了空間幾何學的獨立發(fā)展,提出了著名的蒙日圓定理:橢圓的兩條切線互相垂直,則切線的交點位于一個與橢圓同心的圓上,稱為蒙日圓,且該圓的半徑等于橢圓長半軸長與短半軸長的平方和的算術(shù)平方根.若圓與橢圓的蒙日圓有且僅有一個公共點,則b的值為()A. B.C. D.2.下列有關(guān)命題的表述中,正確的是()A.命題“若是偶數(shù),則,都是偶數(shù)”的否命題是假命題B.命題“若為正無理數(shù),則也是無理數(shù)”的逆命題是真命題C.命題“若,則”的逆否命題為“若,則”D.若命題“”,“”均為假命題,則,均為假命題3.將直線繞著原點逆時針旋轉(zhuǎn),得到新直線的斜率是()A. B.C. D.4.一個動圓與定圓相外切,且與直線相切,則動圓圓心的軌跡方程為()A. B.C. D.5.在正方體中,為棱的中點,則異面直線與所成角的正切值為A. B.C. D.6.已知圓的半徑為,平面上一定點到圓心的距離,是圓上任意一點.線段的垂直平分線和直線相交于點,設點在圓上運動時,點的軌跡為,當時,軌跡對應曲線的離心率取值范圍為()A. B.C. D.7.已知是等比數(shù)列,則()A.數(shù)列是等差數(shù)列 B.數(shù)列是等比數(shù)列C.數(shù)列是等差數(shù)列 D.數(shù)列是等比數(shù)列8.若過點(2,1)的圓與兩坐標軸都相切,則圓心到直線的距離為()A. B.C. D.9.《鏡花緣》是清代文人李汝珍創(chuàng)作的長篇小說,書中有這樣一個情節(jié):一座樓閣到處掛滿了五彩繽紛的大小燈球,燈球有兩種,一種是大燈下綴2個小燈,另一種是大燈下綴4個小燈,大燈共360個,小燈共1200個.若在這座樓閣的燈球中,隨機選取一個燈球,則這個燈球是大燈下綴4個小燈的概率為A. B.C. D.10.己知命題;命題,則下列命題中為假命題的是()A. B.C. D.11.設雙曲線的虛軸長為,焦距為,則雙曲線的漸近線方程為()A. B.C. D.12.集合,則集合A的子集個數(shù)為()A.2個 B.4個C.8個 D.16個二、填空題:本題共4小題,每小題5分,共20分。13.已知,則正整數(shù)___________.14.在中,,,,則__________.15.基礎建設對社會經(jīng)濟效益產(chǎn)生巨大的作用.某市投入億元進行基礎建設,年后產(chǎn)生億元社會經(jīng)濟效益.若該市投資基礎建設4年后產(chǎn)生的社會經(jīng)濟效益是投資額的2倍,則再過______年.該項投資產(chǎn)生的社會經(jīng)濟效益是投資額的8倍16.設為等差數(shù)列的前n項和,若,,則______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的長軸長是,以其短軸為直徑的圓過橢圓的左右焦點,.(1)求橢圓E的方程;(2)過橢圓E左焦點作不與坐標軸垂直的直線,交橢圓于M,N兩點,線段MN的垂直平分線與y軸負半軸交于點Q,若點Q的縱坐標的最大值是,求面積的取值范圍.18.(12分)已知滿足,.(1)求證:是等差數(shù)列,求的通項公式;(2)若,的前項和是,求證:.19.(12分)設函數(shù)過點(1)求函數(shù)的單調(diào)區(qū)間和極值(要列表);(2)求函數(shù)在上的最大值和最小值.20.(12分)如圖所示,橢圓的左、右焦點分別為、,左、右頂點分別為、,為橢圓上一點,連接并延長交橢圓于點,已知橢圓的離心率為,△的周長為8(1)求橢圓的方程;(2)設點的坐標為①當,,成等差數(shù)列時,求點的坐標;②若直線、分別與直線交于點、,以為直徑的圓是否經(jīng)過某定點?若經(jīng)過定點,求出定點坐標;若不經(jīng)過定點,請說明理由21.(12分)在平面直角坐標系中,已知點在橢圓上,其中為橢圓E的離心率(1)求b的值;(2)A,B分別為橢圓E的左右頂點,過點的直線l與橢圓E相交于M,N兩點,直線與交于點T,求證:22.(10分)在①成等差數(shù)列;②成等比數(shù)列;③這三個條件中任選一個,補充在下面的問題中,并對其求解.問題:已知為數(shù)列的前項和,,且___________.(1)求數(shù)列的通項公式;(2)記,求數(shù)列的前項和.注:如果選擇多個條件分別解答,按第一個解答計分.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】由題意求出蒙日圓方程,再由兩圓只有一個交點可知兩圓相切,從而列方程可求出b的值【詳解】由題意可得橢圓的蒙日圓的半徑,所以蒙日圓方程為,因為圓與橢圓的蒙日圓有且僅有一個公共點,所以兩圓相切,所以,解得,故選:B2、C【解析】對于選項A:根據(jù)偶數(shù)性質(zhì)即可判斷;對于選項B:通過舉例即可判斷,對于選項C:利用逆否命題的概念即可判斷;對于選項D:根據(jù)且、或和非的關(guān)系即可判斷.【詳解】選項A:原命題的否命題為:若不是偶數(shù),則,不都是偶數(shù),若,都是偶數(shù),則一定是偶數(shù),從而原命題的否命題為真命題,故A錯誤;選項B:原命題的逆命題:若是無理數(shù),則也為正無理數(shù),當,即為無理數(shù),但是有理數(shù),故B錯誤;選項C:由逆否命題的概念可知,C正確;選項D:由為假命題可知,,至少有一個為假命題,由為假命題可知,和均為假命題,故為假命題,為真命題,故D錯誤.故選:C.3、B【解析】由題意知直線的斜率為,設其傾斜角為,將直線繞著原點逆時針旋轉(zhuǎn),得到新直線的斜率為,化簡求值即可得到答案.【詳解】由知斜率為,設其傾斜角為,則,將直線繞著原點逆時針旋轉(zhuǎn),則故新直線的斜率是.故選:B.4、D【解析】根據(jù)點到直線的距離與點到點之間距離的關(guān)系化簡即可.【詳解】定圓的圓心,半徑為2,設動圓圓心P點坐標為(x,y),動圓的半徑為r,d為動圓圓心到直線的距離,即r,則根據(jù)兩圓相外切及直線與圓相切的性質(zhì)可得,所以,化簡得:∴動圓圓心軌跡方程為故選:D5、C【解析】利用正方體中,,將問題轉(zhuǎn)化為求共面直線與所成角的正切值,在中進行計算即可.【詳解】在正方體中,,所以異面直線與所成角為,設正方體邊長為,則由為棱的中點,可得,所以,則.故選C.【點睛】求異面直線所成角主要有以下兩種方法:(1)幾何法:①平移兩直線中的一條或兩條,到一個平面中;②利用邊角關(guān)系,找到(或構(gòu)造)所求角所在的三角形;③求出三邊或三邊比例關(guān)系,用余弦定理求角;(2)向量法:①求兩直線的方向向量;②求兩向量夾角的余弦;③因為直線夾角為銳角,所以②對應的余弦取絕對值即為直線所成角的余弦值.6、D【解析】分點A在圓內(nèi),圓外兩種情況,根據(jù)中垂線的性質(zhì),結(jié)合橢圓、雙曲線的定義可判斷軌跡,再由離心率計算即可求解.【詳解】當A在圓內(nèi)時,如圖,,所以的軌跡是以O,A為焦點的橢圓,其中,,此時,,.當A在圓外時,如圖,因為,所以軌跡是以O,A為焦點的雙曲線,其中,,此時,,.綜上可知,.故選:D7、B【解析】取,可判斷AC選項;利用等比數(shù)列的定義可判斷B選項;取可判斷D選項.【詳解】若,則、無意義,A錯C錯;設等比數(shù)列的公比為,則,(常數(shù)),故數(shù)列是等比數(shù)列,B對;取,則,數(shù)列為等比數(shù)列,因為,,,且,所以,數(shù)列不是等比數(shù)列,D錯.故選:B.8、B【解析】由題意可知圓心在第一象限,設圓心的坐標為,可得圓的半徑為,寫出圓的標準方程,利用點在圓上,求得實數(shù)的值,利用點到直線的距離公式可求出圓心到直線的距離.【詳解】由于圓上的點在第一象限,若圓心不在第一象限,則圓與至少與一條坐標軸相交,不合乎題意,所以圓心必在第一象限,設圓心的坐標為,則圓的半徑為,圓的標準方程為.由題意可得,可得,解得或,所以圓心的坐標為或,圓心到直線的距離均為;圓心到直線的距離均為圓心到直線的距離均為;所以,圓心到直線的距離為.故選:B.【點睛】本題考查圓心到直線距離的計算,求出圓的方程是解題的關(guān)鍵,考查計算能力,屬于中等題.9、B【解析】設大燈下綴2個小燈為個,大燈下綴4個小燈有個,根據(jù)題意求得,再由古典概型及其概率的公式,即可求解【詳解】設大燈下綴2個小燈為個,大燈下綴4個小燈有個,根據(jù)題意可得,解得,則燈球的總數(shù)為個,故這個燈球是大燈下綴4個小燈的概率為,故選B【點睛】本題主要考查了古典概型及其概率的計算,其中解答中根據(jù)題意列出方程組,求得兩種燈球的數(shù)量是解答的關(guān)鍵,著重考查了運算與求解能力,屬于基礎題10、A【解析】根據(jù)或且非命題的真假進行判斷即可.【詳解】當,故命題是真命題,,故命題是真命題.因此可知是假命題,是真命題,,均為真命題.故選:A11、B【解析】求出、的值,即可得出雙曲線的漸近線方程.【詳解】由已知可得,,則,因此,該雙曲線的漸近線方程為.故選:B.12、C【解析】取,再根據(jù)的周期為4,可得,即可得解.【詳解】因為,所以.時,,時,,時,,時,,所以集合,所以的子集的個數(shù)為,故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、6【解析】根據(jù)組合數(shù)和排列數(shù)的運算即可求得答案.【詳解】由題意,,得.故答案為:6.14、【解析】由已知在中利用余弦定理可得的值,可求,可得,即可得解的值【詳解】解:因為在中,,,,所以由余弦定理可得,所以,即,則故答案為:15、8【解析】由4年后產(chǎn)生的社會經(jīng)濟效益是投資額的2倍,代入已知函數(shù)式求得參數(shù),再求得社會經(jīng)濟效益是投資額的8倍時的時間,即為所求結(jié)論【詳解】由條件得,∴,即.設投資年后,產(chǎn)生的社會經(jīng)濟效益是投資額的8倍,則有,解得,所以再過年,該項投資產(chǎn)生社會經(jīng)濟效益是投資額的8倍故答案為:816、36【解析】利用等差數(shù)列前n項和的性質(zhì)進行求解即可.【詳解】因為為等差數(shù)列的前n項和,所以也成等差數(shù)列,即成等差數(shù)列,所以,故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)根據(jù)給定條件結(jié)合列式計算即可作答.(2)設出直線MN的方程,與橢圓方程聯(lián)立并結(jié)合已知求出m的范圍,再借助韋達定理求出面積函數(shù),利用函數(shù)單調(diào)性計算作答.【小問1詳解】令橢圓半焦距為c,依題意,,解得,所以橢圓E的方程為.【小問2詳解】由(1)知,橢圓E左焦點為,設過橢圓E左焦點的直線為(存在且不為0),由消去x得,,設,則,線段的中點為,因此線段的垂直平分線為,由得的縱坐標為,依題意,且,解得,由(1)知,,,令,在上單調(diào)遞減,當,即時,,當,即時,,所以面積的取值范圍.【點睛】結(jié)論點睛:過定點的直線l:y=kx+b交圓錐曲線于點,,則面積;過定點直線l:x=ty+a交圓錐曲線于點,,則面積18、(1)證明見解析,(2)證明見解析【解析】(1)在等式兩邊同時除以,結(jié)合等差數(shù)列的定義可證得數(shù)列為等差數(shù)列,確定該數(shù)列的首項和公差,可求得的表達式;(2)求得,利用裂項相消法求得,即可證得原不等式成立.【小問1詳解】解:在等式兩邊同時除以可得且,所以,數(shù)列是以為首項,以為公差的等差數(shù)列,則,因此,.【小問2詳解】證明:,所以,.故原不等式得證.19、(1)增區(qū)間,,減區(qū)間,極大值,極小值(2)最大值,最小值【解析】(1)將點代入函數(shù)解析式即可求得a,對函數(shù)求導,分析導函數(shù)的正負,確定單調(diào)區(qū)間及極值;(2)分析函數(shù)在此區(qū)間上的單調(diào)性,由極值、端點值確定最值.【小問1詳解】∵點在函數(shù)的圖象上,∴,解得,∴,∴,當或時,,單調(diào)遞增;當時,,單調(diào)遞減;當變化時,的變化情況如下表:00極大值極小值∴當時,有極大值,且極大值為,當時,有極小值,且極小值為,所以的單調(diào)遞增區(qū)間為和,單調(diào)遞減區(qū)間為,極大值為,極小值為;【小問2詳解】由(1)可得:函數(shù)在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增.∴,又,,∴20、(1);(2)①或;②過定點、,理由見解析.【解析】(1)由焦點三角形的周長、離心率求橢圓參數(shù),即可得橢圓方程.(2)①由(1)可得,結(jié)合橢圓的定義求,即可確定的坐標;②由題設,求直線、的方程,進而求、坐標,即可得為直徑的圓的方程,令求橫坐標,即可得定點.【小問1詳解】由題設,易知:,可得,則,∴橢圓.【小問2詳解】①由(1)知:,令,則,∴,解得,故,此時或②由(1),,,∴可令直線:,直線:,∴將代入直線可得:,,則圓心且半徑為,∴為直徑的圓為,當時,,又,∴,可得或.∴為直徑的圓過定點、.【點睛】關(guān)鍵點點睛:第二問,應用點斜式寫出直線、的方程,再求、坐標,根據(jù)定義求為直徑的圓的方程,最后令及在橢圓上求定點.21、(1)1(2)證明見解析【解析】(1)根據(jù)點在橢圓E上建立方程,結(jié)合,然后解出方程即可;(2)聯(lián)立直線與橢圓的方程,表示出直線與,求得交點的坐標,再分別表示出直線和的斜率并作差,通過韋達定理證明直線和的斜率相等即可.【小問1詳解】由點在橢圓E上,得:又,即解得:【小問2詳解】依題意,得,且直線l與x軸不會平行設直線l的方程為,,由方程組消去x可得:則有:,且直線的方程為,直線的方程為由方程組可得:設直線的斜率分別是,則有:可得:又可得:故【點睛】(1)解答直線與橢圓的題目時,時常把兩個曲線的方程聯(lián)立,消去x(或y)建立一元二次方程,然后借助根與系數(shù)的關(guān)系,并結(jié)合題設條件建立有關(guān)參變量的等量關(guān)系(2)涉及

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論