版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
陜西省寶雞市渭濱區(qū)2023年高二上數(shù)學(xué)期末復(fù)習(xí)檢測(cè)模擬試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知?jiǎng)t是的A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件2.已知函數(shù)有兩個(gè)不同的零點(diǎn),則實(shí)數(shù)的取值范圍是()A B.C. D.3.已知函數(shù),則的值為()A. B.C.0 D.14.已知點(diǎn)在拋物線:上,則的焦點(diǎn)到其準(zhǔn)線的距離為()A. B.C.1 D.25.已知圓,過(guò)點(diǎn)P的直線l被圓C所截,且截得最長(zhǎng)弦的長(zhǎng)度與最短弦的長(zhǎng)度比值為5∶4,若O為坐標(biāo)原點(diǎn),則最大值為()A.3 B.4C.5 D.66.已知f(x)是定義在R上的函數(shù),且f(2)=2,,則f(x)>x的解集是()A. B.C. D.7.已知函數(shù)為偶函數(shù),且當(dāng)時(shí),,則不等式的解集為()A. B.C. D.8.在空間直角坐標(biāo)系中,點(diǎn)關(guān)于平面的對(duì)稱點(diǎn)的坐標(biāo)是()A. B.C. D.9.雙曲線實(shí)軸長(zhǎng)為()A.1 B.C.2 D.10.已知五個(gè)數(shù)據(jù)3,4,x,6,7的平均數(shù)是x,則該樣本標(biāo)準(zhǔn)差為()A.1 B.C. D.211.已知是拋物線:的焦點(diǎn),直線與拋物線相交于,兩點(diǎn),滿足,記線段的中點(diǎn)到拋物線的準(zhǔn)線的距離為,則的最大值為()A. B.C. D.12.如圖,平面四邊形中,,,,為等邊三角形,現(xiàn)將沿翻折,使點(diǎn)移動(dòng)至點(diǎn),且,則三棱錐的外接球的表面積為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.某次實(shí)驗(yàn)得到如下7組數(shù)據(jù),通過(guò)判斷知道與具有線性相關(guān)性,其線性回歸方程為,則______.(參考公式:)12345676.06.26.36.46.46.76.814.已知平面,過(guò)空間一定點(diǎn)P作一直線l,使得直線l與平面,所成的角都是30°,則這樣的直線l有______條15.已知從某班學(xué)生中任選兩人參加農(nóng)場(chǎng)勞動(dòng),選中兩人都是男生的概率是,選中兩人都是女生的概率是,則選中兩人中恰有一人是女生的概率為_(kāi)_____16.已知函數(shù)(1)若時(shí)函數(shù)有三個(gè)互不相同的零點(diǎn),求實(shí)數(shù)的取值范圍;(2)若對(duì)任意的,不等式在上恒成立,求實(shí)數(shù)的取值范圍三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知與定點(diǎn),的距離比為的點(diǎn)P的軌跡為曲線C,過(guò)點(diǎn)的直線l與曲線C交于M,N兩點(diǎn).(1)求曲線C的軌跡方程;(2)若,求.18.(12分)已知拋物線y2=8x.(1)求出該拋物線的頂點(diǎn)、焦點(diǎn)、準(zhǔn)線、對(duì)稱軸、變量x的范圍;(2)以坐標(biāo)原點(diǎn)O為頂點(diǎn),作拋物線的內(nèi)接等腰三角形OAB,|OA|=|OB|,若焦點(diǎn)F是△OAB的重心,求△OAB的周長(zhǎng)19.(12分)已知圓O:與圓C:(1)在①,②這兩個(gè)條件中任選一個(gè),填在下面的橫線上,并解答若______,判斷這兩個(gè)圓位置關(guān)系;(2)若,求直線被圓C截得的弦長(zhǎng)注:若第(1)問(wèn)選擇兩個(gè)條件分別作答,按第一個(gè)作答計(jì)分20.(12分)已知等差數(shù)列滿足,(1)求的通項(xiàng)公式;(2)若等比數(shù)列的前n項(xiàng)和為,且,,,求滿足的n的最大值21.(12分)已知函數(shù),,其中為自然對(duì)數(shù)的底數(shù).(1)若為的極值點(diǎn),求的單調(diào)區(qū)間和最大值;(2)是否存在實(shí)數(shù),使得的最大值是?若存在,求出的值;若不存在,說(shuō)明理由.22.(10分)已知點(diǎn),,設(shè)動(dòng)點(diǎn)P滿足直線PA與PB的斜率之積為,記動(dòng)點(diǎn)P的軌跡為曲線E(1)求曲線E的方程;(2)若動(dòng)直線l經(jīng)過(guò)點(diǎn),且與曲線E交于C,D(不同于A,B)兩點(diǎn),問(wèn):直線AC與BD的斜率之比是否為定值?若為定值,求出該定值;若不為定值,請(qǐng)說(shuō)明理由
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】先解不等式,再比較集合包含關(guān)系確定選項(xiàng).【詳解】因?yàn)?,所以是的充分不必要條件,選A.【點(diǎn)睛】本題考查解含絕對(duì)值不等式、解一元二次不等式以及充要關(guān)系判定,考查基本分析求解能力,屬基礎(chǔ)題.2、A【解析】分離參數(shù),求函數(shù)的導(dǎo)數(shù),根據(jù)函數(shù)有兩個(gè)零點(diǎn)可知函數(shù)的單調(diào)性,即可求解.【詳解】由題意得有兩個(gè)零點(diǎn)令,則且所以,在上為增函數(shù),可得,當(dāng),在上單調(diào)遞減,可得,即要有兩個(gè)零點(diǎn)有兩個(gè)零點(diǎn),實(shí)數(shù)的取值范圍是.故選:A【點(diǎn)睛】方法點(diǎn)睛:已知函數(shù)有零點(diǎn)求參數(shù)取值范圍常用的方法和思路(1)直接法:直接根據(jù)題設(shè)條件構(gòu)建關(guān)于參數(shù)的不等式,再通過(guò)解不等式確定參數(shù)范圍;(2)分離參數(shù)法:先將參數(shù)分離,轉(zhuǎn)化成求函數(shù)值域問(wèn)題加以解決;(3)數(shù)形結(jié)合法:先對(duì)解析式變形,在同一平面直角坐標(biāo)系中,畫出函數(shù)的圖象,然后數(shù)形結(jié)合求解3、B【解析】對(duì)函數(shù)求導(dǎo),然后將代入導(dǎo)數(shù)中可得結(jié)果.【詳解】,則,則,故選:B4、B【解析】由點(diǎn)在拋物線上,求得參數(shù),焦點(diǎn)到其準(zhǔn)線的距離即為.【詳解】由點(diǎn)在拋物線上,易知,,故焦點(diǎn)到其準(zhǔn)線的距離為.故選:B.5、C【解析】由題意,點(diǎn)P在圓C內(nèi),且最長(zhǎng)弦的長(zhǎng)度為直徑長(zhǎng)10,則最短弦的長(zhǎng)度為8,進(jìn)而可得,所以點(diǎn)P的軌跡為以C為圓心,半徑為3的圓,從而即可求解.【詳解】解:由題意,圓,所以圓C是以為圓心,半徑為5的圓,因?yàn)檫^(guò)點(diǎn)P的直線l被圓C所截,且截得最長(zhǎng)弦的長(zhǎng)度與最短弦的長(zhǎng)度比值為5∶4,所以點(diǎn)P在圓C內(nèi),且最長(zhǎng)弦的長(zhǎng)度為直徑長(zhǎng)10,則最短弦的長(zhǎng)度為8,所以由弦長(zhǎng)公式有,所以點(diǎn)P的軌跡為以C為圓心,半徑為3的圓,所以,故選:C.6、D【解析】構(gòu)造,結(jié)合已知有在R上遞增且,原不等式等價(jià)于,利用單調(diào)性求解集.【詳解】令,由題設(shè)知:,即在R上遞增,又,所以f(x)>x等價(jià)于,即.故選:D7、D【解析】結(jié)合導(dǎo)數(shù)以及函數(shù)的奇偶性判斷出的單調(diào)性,由此化簡(jiǎn)不等式來(lái)求得不等式的解集.【詳解】當(dāng)時(shí),單調(diào)遞增,,所以單調(diào)遞增.因?yàn)槭桥己瘮?shù),所以當(dāng)時(shí),單調(diào)遞減.,,,或.即不等式的解集為.故選:D8、C【解析】根據(jù)空間里面點(diǎn)關(guān)于面對(duì)稱的性質(zhì)即可求解.【詳解】在空間直角坐標(biāo)系中,點(diǎn)關(guān)于平面的對(duì)稱點(diǎn)的坐標(biāo)是.故選:C.9、B【解析】由雙曲線的標(biāo)準(zhǔn)方程可求出,即可求雙曲線的實(shí)軸長(zhǎng).【詳解】由可得:,,即,實(shí)軸長(zhǎng),故選:B10、B【解析】先求出的值,然后利用標(biāo)準(zhǔn)差公式求解即可【詳解】解:因?yàn)槲鍌€(gè)數(shù)據(jù)3,4,x,6,7的平均數(shù)是x,所以,解得,所以標(biāo)準(zhǔn)差,故選:B11、C【解析】設(shè),過(guò)點(diǎn),分別作拋物線的準(zhǔn)線的垂線,垂足分別為,進(jìn)而得,再結(jié)合余弦定理得,進(jìn)而根據(jù)基本不等式求解得.【詳解】解:設(shè),過(guò)點(diǎn),分別作拋物線的準(zhǔn)線的垂線,垂足分別為,則,因?yàn)辄c(diǎn)為線段中點(diǎn),所以根據(jù)梯形中位線定理得點(diǎn)到拋物線的準(zhǔn)線的距離為,因?yàn)?,所以在中,由余弦定理得,所以,又因?yàn)?,所以,?dāng)且僅當(dāng)時(shí)等號(hào)成立,所以,故.所以的最大值為.故選:C【點(diǎn)睛】本題考查拋物線的定義,直線與拋物線的位置關(guān)系,余弦定理,基本不等式,考查運(yùn)算求解能力,是中檔題.本題解題的關(guān)鍵在于根據(jù)題意,設(shè),進(jìn)而結(jié)合拋物線的定于與余弦定理得,,再求最值.12、A【解析】將三棱錐補(bǔ)形為如圖所示的三棱柱,則它們的外接球相同,由此易知外接球球心應(yīng)在棱柱上下底面三角形的外心連線上,在中,計(jì)算半徑即可.【詳解】由,,可知平面將三棱錐補(bǔ)形為如圖所示的三棱柱,則它們的外接球相同,由此易知外接球球心應(yīng)在棱柱上下底面三角形的外心連線上,記的外心為,由為等邊三角形,可得又,故在中,此即為外接球半徑,從而外接球表面積為故選:A【點(diǎn)睛】本題考查了三棱錐外接球的表面積,考查了學(xué)生空間想象,邏輯推理,綜合分析,數(shù)學(xué)運(yùn)算的能力,屬中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、9##【解析】求得樣本中心點(diǎn)的坐標(biāo),代入回歸直線,即可求得.詳解】根據(jù)表格數(shù)據(jù)可得:故,解得.故答案為:.14、4【解析】設(shè)平面,在平面內(nèi)作于點(diǎn)O,在平面內(nèi)過(guò)點(diǎn)O作,設(shè)OM是的角平分線,過(guò)棱m上一點(diǎn)P作,則過(guò)點(diǎn)O在平面OMQP上存在2條直線l,使得直線l與OB、OA成,直線l與平面且與平面,所成的角都是30°,在的補(bǔ)角一側(cè)也存在2條滿足條件的直線l,由此可得答案.【詳解】解:設(shè)平面,在平面內(nèi)作于點(diǎn)O,在平面內(nèi)過(guò)點(diǎn)O作,因?yàn)槠矫?,所以,設(shè)OM是的角平分線,則,過(guò)棱m上一點(diǎn)P作,則過(guò)點(diǎn)O在平面OMQP上存在2條直線l,使得直線l與OB、OA成,此時(shí)直線l與平面且與平面,所成的角都是30°,同理,在的補(bǔ)角一側(cè)也存在2條滿足條件的直線l,所以這樣的直線l有4條,故答案為:4.15、【解析】記“選中兩人都是男生”為事件,“選中兩人都是女生”為事件,“選中兩人中恰有一人是女生”為事件,根據(jù)為互斥事件,與為對(duì)立事件,從而可求出答案.【詳解】記“選中兩人都是男生”為事件,“選中兩人都是女生”為事件,“選中兩人中恰有一人是女生”為事件,易知為互斥事件,與為對(duì)立事件,又,所以.故答案為:.16、(1)(2)【解析】(1)將函數(shù)有三個(gè)互不相同的零點(diǎn)轉(zhuǎn)化為有三個(gè)互不相等的實(shí)數(shù)根,令,求導(dǎo)確定單調(diào)性求出極值即可求解;(2)求導(dǎo)確定單調(diào)性,結(jié)合以及得,由得,結(jié)合二次函數(shù)單調(diào)性求出最小值即可求解.【小問(wèn)1詳解】當(dāng)時(shí),.函數(shù)有三個(gè)互不相同的零點(diǎn),即有三個(gè)互不相等的實(shí)數(shù)根令,則,令得或,在和上均減函數(shù),在上為增函數(shù),極小值為,極大值為,的取值范圍是;【小問(wèn)2詳解】,且,當(dāng)或時(shí),;當(dāng)時(shí),函數(shù)的單調(diào)遞增區(qū)間為和,單調(diào)遞減區(qū)間為當(dāng)時(shí),,又,,又,又在上恒成立,即,即當(dāng)時(shí),恒成立在上單減,故最小值為,的取值范圍是三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)或【解析】(1)設(shè)曲線上的任意一點(diǎn),由題意可得,化簡(jiǎn)即可得出(2)分直線的斜率不存在與存在兩種情況討論,當(dāng)斜率不存在時(shí),即可求出、的坐標(biāo),從而求出,當(dāng)直線的斜率存在,設(shè)直線方程為,,,聯(lián)立直線與圓的方程,消元列出韋達(dá)定理,則,即可求出,從而求出直線方程,由圓心在直線上,即可求出弦長(zhǎng);【小問(wèn)1詳解】解:(1)設(shè)曲線上的任意一點(diǎn),由題意可得:,即,整理得【小問(wèn)2詳解】解:依題意當(dāng)直線的斜率不存在時(shí),直線方程為,則,則或,即、,所以、,所以滿足條件,此時(shí),當(dāng)直線的斜率存在,設(shè)直線方程為,,,則,消去整理得,由,解得或,所以、,因?yàn)?,,所以,解得,所以直線方程為,又直線過(guò)圓心,所以,綜上可得或;18、(1)見(jiàn)解析;(2)2+4.【解析】(1)由拋物線的簡(jiǎn)單幾何性質(zhì)易得結(jié)果;(2)由|OA|=|OB|可知AB⊥x軸,又焦點(diǎn)F是△OAB的重心,則|OF|=|OM|=2.設(shè)A(3,m),代入y2=8x即可得到△OAB的周長(zhǎng)【詳解】(1)拋物線y2=8x的頂點(diǎn)、焦點(diǎn)、準(zhǔn)線、對(duì)稱軸、變量x的范圍分別為(0,0),(2,0),x=-2,x軸,x≥0.(2)如圖所示.由|OA|=|OB|可知AB⊥x軸,垂足為點(diǎn)M,又焦點(diǎn)F是△OAB的重心,則|OF|=|OM|.因?yàn)镕(2,0),所以|OM|=|OF|=3.所以M(3,0).故設(shè)A(3,m),代入y2=8x得m2=24.所以m=2或m=-2.所以A(3,2),B(3,-2)所以|OA|=|OB|=.所以△OAB的周長(zhǎng)為2+4.【點(diǎn)睛】本題考查了拋物線簡(jiǎn)單性質(zhì)的應(yīng)用,解題關(guān)鍵利用好三角形重心的性質(zhì),屬于中檔題.19、(1)選①:外離;選②:相切;(2)【解析】(1)不論選①還是選②,都要首先算出兩圓的圓心距,然后和兩圓的半徑之和或差進(jìn)行比較即可;(2)根據(jù)點(diǎn)到直線的距離公式,先計(jì)算圓心到直線的距離,然后利用圓心距、半徑、弦長(zhǎng)的一半之間的關(guān)系求解.【小問(wèn)1詳解】選①圓O的圓心為,半徑為l;圓C圓心為,半徑為因?yàn)閮蓤A的圓心距為,且兩圓的半徑之和為,所以兩圓外離選②圓O的圓心為,半徑為1.圓C的圓心為,半徑為2因?yàn)閮蓤A的圓心距為.且兩圓的半徑之和為,所以兩圓外切【小問(wèn)2詳解】因?yàn)辄c(diǎn)C到直線的距離,所以直線被圓C截得的弦長(zhǎng)為20、(1)(2)10【解析】(1)設(shè)等差數(shù)列公差為d,根據(jù)已知條件列關(guān)于和d的方程組即可求解;(2)設(shè)等比數(shù)列公比為q,根據(jù)已知條件求出和q,根據(jù)等比數(shù)列求和公式即可求出,再解關(guān)于n的不等式即可.【小問(wèn)1詳解】由題意得,解得,∴【小問(wèn)2詳解】∵,,又,∴,公比,∴,令,得,令,所以n的最大值為1021、(1)單調(diào)增區(qū)間是,單調(diào)減區(qū)間是;最大值為;(2)存在,.【解析】(1)利用為的極值點(diǎn)求得,進(jìn)而可得函數(shù)的單調(diào)區(qū)間和最大值;(2)對(duì)導(dǎo)函數(shù),分與進(jìn)行討論,得函數(shù)的單調(diào)性進(jìn)而求得最值,再由最大值是求出的值.【詳解】解:.(1)∵,,∴,由,得.∴,∴,,,,∴的單調(diào)增區(qū)間是,單調(diào)減區(qū)間是;的極大值為;也即的最大值為.(2)解:∵,∴,①當(dāng)時(shí),單調(diào)遞增,得的最大值是,解得,舍去;②時(shí),由,即,當(dāng),即時(shí),∴時(shí),;時(shí),;∴的單調(diào)增區(qū)間是,單調(diào)減區(qū)間是,又在上的最大值為,∴,∴;當(dāng),即時(shí),在單調(diào)遞增,∴的最大值是,解得,舍去;綜上:存在符合題意,
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- JJF 2182-2024農(nóng)灌機(jī)井取水量計(jì)量監(jiān)測(cè)方法
- JJF 2165-2024實(shí)驗(yàn)室振動(dòng)式液體密度儀校準(zhǔn)規(guī)范
- 2024年度網(wǎng)絡(luò)游戲虛擬物品交易合同
- 2024年度建筑工程施工承包合同標(biāo)的明細(xì)
- 2024城市地下綜合管廊建設(shè)項(xiàng)目融資合同
- 2024年度放心簽建材銷售合同模板
- 2024年工程質(zhì)量檢測(cè)與環(huán)保評(píng)估合同
- 2024年度廣告發(fā)布合同標(biāo)的廣告內(nèi)容與投放時(shí)間
- 2024小產(chǎn)權(quán)房買賣合同糾紛
- 地理教學(xué)課件教學(xué)課件
- 2024年入團(tuán)知識(shí)考試題庫(kù)及答案
- 腫瘤化療導(dǎo)致的中性粒細(xì)胞減少診治中國(guó)專家共識(shí)(2023版)解讀
- 《新能源汽車概論》課件-6新能源汽車空調(diào)系統(tǒng)結(jié)構(gòu)及工作原理
- 2024年共青團(tuán)入團(tuán)考試題庫(kù)(附答案)
- 田徑運(yùn)動(dòng)會(huì)各種記錄表格
- 產(chǎn)科新生兒疫苗接種課件
- 企業(yè)信息管理概述課件
- 室外健身器材投標(biāo)方案(技術(shù)方案)
- 足浴店店長(zhǎng)聘用合同范本
- tubeless胸科手術(shù)麻醉
- 電商免責(zé)聲明范本
評(píng)論
0/150
提交評(píng)論