版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
山西省臨汾市2023-2024學(xué)年高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測試試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.由直線上的點向圓引切線,則切線長的最小值為()A. B.C.4 D.22.“”是“方程為雙曲線方程”的()A充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件3.在二項式的展開式中,前三項的系數(shù)成等差數(shù)列,把展開式中所有的項重新排成一列,則有理項互不相鄰的概率()A. B.C. D.4.已知函數(shù),若存在唯一的零點,且,則的取值范圍是A. B.C. D.5.如圖,某圓錐的軸截面是等邊三角形,點是底面圓周上的一點,且,點是的中點,則異面直線與所成角的余弦值是()A. B.C. D.6.已知直線與平行,則系數(shù)()A. B.C. D.7.在空間直角坐標(biāo)系中,點關(guān)于軸對稱的點的坐標(biāo)為()A. B.C. D.8.已知數(shù)列是等比數(shù)列,,是函數(shù)的兩個不同零點,則()A.16 B.C.14 D.9.若球的半徑為,一個截面圓的面積是,則球心到截面圓心的距離是()A. B.C. D.10.已知向量,,且與互相垂直,則()A. B.C. D.11.已知,則條件“”是條件“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件.12.方程表示的曲線是()A.一個橢圓和一個點 B.一個雙曲線的右支和一條直線C.一個橢圓一部分和一條直線 D.一個橢圓二、填空題:本題共4小題,每小題5分,共20分。13.已知橢圓的左、右焦點分別為F1,F(xiàn)2,P為橢圓上一點,且(O為坐標(biāo)原點).若,則橢圓的離心率為________14.已知直線與圓交于,兩點,則的最小值為___________.15.用數(shù)學(xué)歸納法證明等式:,驗證時,等式左邊________16.已知直線l的方向向量,平面的法向量,若,則______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知等差數(shù)列中,,.(1)求的通項公式;(2)求的前項和的最大值.18.(12分)已知函數(shù).(1)求曲線在點處的切線方程;(2)求在區(qū)間上的最值.19.(12分)如圖所示,在三棱柱中,,點在平面ABC上的射影為線段AC的中點D,側(cè)面是邊長為2的菱形(1)若△ABC是正三角形,求異面直線與BC所成角的余弦值;(2)當(dāng)直線與平面所成角的正弦值為時,求線段BD的長20.(12分)如圖,在四棱錐中,底面四邊形為角梯形,,,,O為的中點,,.(1)證明:平面;(2)若,求平面與平面所成夾角的余弦值.21.(12分)如圖,在平面直角坐標(biāo)系上,已知圓的直徑,定直線到圓心的距離為,且直線垂直于直線,點是圓上異于、的任意一點,直線、分別交與、兩點(1)求過點且與圓相切的直線方程;(2)若,求以為直徑的圓方程;(3)當(dāng)點變化時,以為直徑的圓是否過圓內(nèi)的一定點,若過定點,請求出定點;若不過定點,請說明理由22.(10分)已知橢圓的焦距為,點在橢圓上.過點的直線l交橢圓于A,B兩點.(1)求該橢圓的方程;(2)若點P為直線上的動點,記直線PA,PM,PB的斜率分別為,,.求證:,,成等差數(shù)列.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】切點與圓心的連線垂直于切線,切線長轉(zhuǎn)化為直線上點與圓心連線和半徑的關(guān)系,利用點到直線的距離公式求出圓心與直線上點距離的最小值,結(jié)合勾股定理即可得出結(jié)果.【詳解】設(shè)為直線上任意一點,,切線長的最小值為:,故選:D.2、C【解析】先求出方程表示雙曲線時滿足的條件,然后根據(jù)“小推大”原則進(jìn)行判斷即可.【詳解】因為方程為雙曲線方程,所以,所以“”是“方程為雙曲線方程”的充要條件.故選:C.3、A【解析】先根據(jù)前三項的系數(shù)成等差數(shù)列求,再根據(jù)古典概型概率公式求結(jié)果【詳解】因為前三項的系數(shù)為,,,當(dāng)時,為有理項,從而概率為.故選:A.4、C【解析】當(dāng)時,,函數(shù)有兩個零點和,不滿足題意,舍去;當(dāng)時,,令,得或.時,;時,;時,,且,此時在必有零點,故不滿足題意,舍去;當(dāng)時,時,;時,;時,,且,要使得存在唯一的零點,且,只需,即,則,選C考點:1、函數(shù)的零點;2、利用導(dǎo)數(shù)求函數(shù)的極值;3、利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性5、C【解析】建立空間直角坐標(biāo)系,分別得到,然后根據(jù)空間向量夾角公式計算即可.【詳解】以過點且垂直于平面的直線為軸,直線,分別為軸,軸,建立如圖所示的空間直角坐標(biāo)系.不妨設(shè),則根據(jù)題意可得,,,,所以,,設(shè)異面直線與所成角為,則.故選:C.6、B【解析】由直線的平行關(guān)系可得,解之可得【詳解】解:直線與直線平行,,解得故選:7、B【解析】結(jié)合已知條件,利用對稱的概念即可求解.【詳解】不妨設(shè)點關(guān)于軸對稱的點的坐標(biāo)為,則線段垂直于軸且的中點在軸,從而點關(guān)于軸對稱的點的坐標(biāo)為.故選:B.8、B【解析】由題意得到,根據(jù)等比數(shù)列的性質(zhì)得到,化簡,即可求解.【詳解】由,是函數(shù)的兩個不同零點,可得,根據(jù)等比數(shù)列的性質(zhì),可得則.故選:B.9、C【解析】由題意可解出截面圓的半徑,然后利用勾股定理求解球心與截面圓圓心的距離【詳解】由截面圓的面積為可知,截面圓的半徑為,則球心到截面圓心的距離為故選:C【點睛】解答本題的關(guān)鍵點在于,球心與截面圓圓心的連線垂直于截面10、D【解析】根據(jù)垂直關(guān)系可得,由向量坐標(biāo)運算可構(gòu)造方程求得結(jié)果.【詳解】,,又與互相垂直,,解得:.故選:D.11、A【解析】若命題,則p是q的充分不必要條件,q是p的必要不充分條件【詳解】因為,所以,所以.故選:A12、C【解析】由可得,或,再由方程判斷所表示的曲線.【詳解】由可得,或,即或,則該方程表示一個橢圓的一部分和一條直線.故選:C二、填空題:本題共4小題,每小題5分,共20分。13、##【解析】由向量的數(shù)量積得,從而得,利用勾股定理和橢圓的定義可得的等式,從而求得離心率【詳解】,所以,又,所以是直角三角形,,,又,,所以,,,所以故答案為:14、【解析】先求出直線經(jīng)過的定點,再求出圓心到定點的距離,數(shù)形結(jié)合即得解.【詳解】由題得,所以直線經(jīng)過定點,圓的圓心為,半徑為.圓心到定點的距離為,當(dāng)時,取得最小值,且最小值為.故答案為:815、【解析】根據(jù)數(shù)學(xué)歸納法的步驟即可解答.【詳解】用數(shù)學(xué)歸納法證明等式:,驗證時,等式左邊=.故答案為:.16、【解析】由,可得∥,從而可得,代入坐標(biāo)列方程可求出,從而可求出【詳解】因為直線l的方向向量,平面的法向量,,所以∥,所以存在唯一實數(shù),使,所以,所以,解得,所以,故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)30.【解析】(1)設(shè)出等差數(shù)列的公差,由已知列式求得公差,進(jìn)一步求出首項,代入等差數(shù)列的通項公式求數(shù)列的通項公式;(2)利用等差數(shù)列求和公式求和,再利用二次函數(shù)求得最值即可.【詳解】解:(1)由題意得,數(shù)列公差為,則解得:,∴(2)由(1)可得,∴∵,∴當(dāng)或時,取得最大值【點睛】本題考查利用基本量求解等差數(shù)列的通項公式,以及前n項和及最值,屬基礎(chǔ)題18、(1)(2)最小值為0,最大值為4【解析】(1)利用導(dǎo)數(shù)求得切線方程.(2)結(jié)合導(dǎo)數(shù)求得在區(qū)間上的最值.【小問1詳解】,所以曲線在點處的切線方程為.【小問2詳解】,所以在區(qū)間遞增;在區(qū)間遞減,,所以在區(qū)間上的最小值為,最大值為.19、(1)(2)或【解析】(1)建立空間直角坐標(biāo)系,利用向量法求得直線與所成角的余弦值.(2)結(jié)合直線與平面所成的角,利用向量法列方程,化簡求得的長.【小問1詳解】依題意點在平面ABC上的射影為線段AC的中點D,所以平面,,由于,所以,以為空間坐標(biāo)原點建立如圖所示空間直角坐標(biāo)系,,,當(dāng)是等邊三角形時,,.設(shè)直線與所成角為,則.【小問2詳解】設(shè),則,,設(shè)平面的法向量為,則,故可設(shè),設(shè)直線與平面所成角為,則,化簡的,解得或,也即或.20、(1)證明見解析;(2).【解析】(1)連接,可通過證明,得平面;(2)以O(shè)為坐標(biāo)原點建立如圖所示的空間直角坐標(biāo)系,求出平面的法向量和平面的法向量,通過向量的夾角公式可得答案.【小問1詳解】如圖,連接,在中,由可得.因為,,所以,,因為,,,所以,所以.又因為,平面,,所以平面.【小問2詳解】由(1)可知,,,兩兩垂直,以O(shè)為坐標(biāo)原點建立如圖所示的空間直角坐標(biāo)系,則,,,,.由,有,則,設(shè)平面的法向量為,由,,有,取,則,,可得平面的一個法向量為.設(shè)平面的法向量為,由,,有,取,則,,可得平面的一個法向量為.由,,,可得平面與平面所成夾角的余弦值為.21、(1)或(2)(3)過定點,定點坐標(biāo)為【解析】(1)對所求直線的斜率是否存在進(jìn)行分類討論,在所求直線斜率不存在時,直接驗證直線與圓相切;在所求直線斜率存在時,設(shè)所求直線方程為,利用點到直線的距離公式可得出關(guān)于的等式,求出的值,綜合可得出所求直線的方程;(2)分點在軸上方、點在軸下方兩種情況討論,求出點、的坐標(biāo),可得出所求圓的圓心坐標(biāo)和半徑,即可得出所求圓的方程;(3)設(shè)直線的方程為,其中,求出點、的坐標(biāo),可求得以線段為直徑的圓的方程,并化簡圓的方程,可求得定點的坐標(biāo).【小問1詳解】解:易知圓的方程為,圓心為原點,半徑為,若所求直線的斜率不存在,則所求直線的方程為,此時直線與圓相切,合乎題意,若所求直線的斜率存在,設(shè)所求直線的方程為,即,由已知可得,解得,此時所求直線的方程為.綜上所述,過點且與圓相切的直線方程為或.【小問2詳解】解:易知直線的方程為,、,若點在軸上方,則直線的方程為,在直線的方程中,令,可得,即點,直線的方程為,在直線的方程中,令,可得,即點,線段的中點為,且,此時,所求圓的方程為;若點在軸下方,同理可求得所求圓的方程為.綜上所述,以為直徑的圓方程為.【小問3詳解】解:不妨設(shè)直線的方程為,其中,在直線的方程中,令,可得,即點,因為,則直線的方程為,在直線的方程中,令,可得,即點,線段中點為,,所以,以線段為直徑的圓的方程為,即,由,解得,因此,當(dāng)點變化時,以為直徑的圓是否過圓內(nèi)的定點.22、(1);(2)證明
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度離婚案件中涉及2024年購置車輛分割協(xié)議書3篇
- 2024年遠(yuǎn)程醫(yī)療服務(wù)系統(tǒng)搭建合同
- 2025年度裝載機(jī)租賃與售后服務(wù)合同3篇
- 2025年度智慧城市安防監(jiān)控系統(tǒng)工程合同書3篇
- 2024年物業(yè)綠化維護(hù)合同(適用于物業(yè)綠化養(yǎng)護(hù))3篇
- 求一個數(shù)比另一個數(shù)多幾(少幾)教學(xué)反思
- 高級財務(wù)會計歷年核算題(分類)
- 人民日報青春摘抄(高中作文素材)
- 華南農(nóng)業(yè)大學(xué)珠江學(xué)院《數(shù)據(jù)庫技術(shù)基礎(chǔ)(ACCESS)》2023-2024學(xué)年第一學(xué)期期末試卷
- 培黎職業(yè)學(xué)院《Java語言程序設(shè)計A》2023-2024學(xué)年第一學(xué)期期末試卷
- 墊江縣中醫(yī)院2018年11月份臨床技能中心教學(xué)設(shè)備招標(biāo)項目招標(biāo)文件
- 排放源統(tǒng)計(環(huán)統(tǒng))年報填報指南
- 反射療法師理論考試復(fù)習(xí)題及答案
- 房地產(chǎn)銷售主管崗位招聘筆試題及解答(某大型國企)2025年
- 心電圖并發(fā)癥預(yù)防及處理
- 重慶市七中學(xué)2023-2024學(xué)年數(shù)學(xué)八上期末統(tǒng)考模擬試題【含解析】
- 檢驗科lis系統(tǒng)需求
- 中東及非洲空氣制水機(jī)行業(yè)現(xiàn)狀及發(fā)展機(jī)遇分析2024-2030
- DL∕T 1631-2016 并網(wǎng)風(fēng)電場繼電保護(hù)配置及整定技術(shù)規(guī)范
- 煤礦立井井筒及硐室設(shè)計規(guī)范
- 房地產(chǎn)項目開發(fā)合作協(xié)議書
評論
0/150
提交評論