上海市同濟大學一附中2024屆數(shù)學高二上期末教學質(zhì)量檢測試題含解析_第1頁
上海市同濟大學一附中2024屆數(shù)學高二上期末教學質(zhì)量檢測試題含解析_第2頁
上海市同濟大學一附中2024屆數(shù)學高二上期末教學質(zhì)量檢測試題含解析_第3頁
上海市同濟大學一附中2024屆數(shù)學高二上期末教學質(zhì)量檢測試題含解析_第4頁
上海市同濟大學一附中2024屆數(shù)學高二上期末教學質(zhì)量檢測試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

上海市同濟大學一附中2024屆數(shù)學高二上期末教學質(zhì)量檢測試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.《萊茵德紙草書》(RhindPapyrus)是世界上最古老的數(shù)學著作之一.書中有這樣一道題目:把93個面包分給5個人,使每個人所得面包個數(shù)成等比數(shù)列,且使較小的兩份之和等于中間一份的四分之三,則最大的一份是()個A.12 B.24C.36 D.482.已知正方形ABCD的邊長為2,E,F(xiàn)分別為CD,CB的中點,分別沿AE,AF將三角形ADE,ABF折起,使得點B,D恰好重合,記為點P,則AC與平面PCE所成角等于()A. B.C. D.3.等差數(shù)列中,已知,則()A.36 B.27C.18 D.94.當我們停放自行車時,只要將自行車旁的撐腳放下,自行車就穩(wěn)了,這用到了()A.三點確定一平面 B.不共線三點確定一平面C.兩條相交直線確定一平面 D.兩條平行直線確定一平面5.設(shè)是函數(shù)的導函數(shù),的圖象如圖所示,則的解集是()A. B.C. D.6.已知直線過點,且其方向向量,則直線的方程為()A. B.C. D.7.總體有編號為01,02,…,19,20的20個個體組成,利用下面的隨機數(shù)表選取3個個體,選取方法是從隨機數(shù)表第1行的第5列和第6列數(shù)字開始由左到右依次選取兩個數(shù)字,則選出來的第3個個體的編號為()7816657208026314070243699728019832049234493582003623486969387481A.08 B.02C.63 D.148.“”是“方程為雙曲線方程”的()A充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件9.如圖所示,已知是橢圓的左、右焦點,為橢圓的上頂點,在軸上,,且是的中點,為坐標原點,若點到直線的距離為3,則橢圓的方程為()A B.C. D.10.已知實數(shù)x,y滿足,則的最大值為()A. B.C.2 D.111.已知等比數(shù)列的前3項和為3,,則()A. B.4C. D.112.若函數(shù),當時,平均變化率為3,則等于()A. B.2C.3 D.1二、填空題:本題共4小題,每小題5分,共20分。13.關(guān)于曲線C:1,有如下結(jié)論:①曲線C關(guān)于原點對稱;②曲線C關(guān)于直線x±y=0對稱;③曲線C是封閉圖形,且封閉圖形的面積大于2π;④曲線C不是封閉圖形,且它與圓x2+y2=2無公共點;⑤曲線C與曲線D:|x|+|y|=2有4個公共點,這4點構(gòu)成正方形其中正確結(jié)論的個數(shù)是_____14.與圓外切于原點,且被y軸截得的弦長為8的圓的標準方程為__________15.已知數(shù)列中,.若為等差數(shù)列,則______.16.已知函數(shù),則曲線在點處的切線方程為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知直線過點(1)若直線與直線垂直,求直線的方程;(2)若直線在兩坐標軸的截距相等,求直線的方程18.(12分)已知在數(shù)列中,,且.(1)求,,并證明數(shù)列是等比數(shù)列;(2)求的通項公式及前n項和.19.(12分)已知圓C:,圓C與x軸交于A,B兩點(1)求直線y=x被圓C所截得的弦長;(2)圓M過點A,B,且圓心在直線y=x+1上,求圓M的方程20.(12分)某校高二年級全體學生參加了一次數(shù)學測試,學校利用簡單隨機抽樣的方法從甲班、乙班各抽取五名同學的數(shù)學測試成績(單位:分)得到如下莖葉圖,若甲、乙兩班數(shù)據(jù)的中位數(shù)相等且平均數(shù)也相等.(1)求出莖葉圖中m和n的值:(2)若從86分以上(不含86分)的同學中隨機抽出兩名,求此兩人都來自甲班的概率.21.(12分)甲乙兩人輪流投籃,每人每次投一球,約定甲先投且先投中者獲勝,一直到有人獲勝或每人都已投球3次時投籃結(jié)束,設(shè)甲每次投籃投中的概率為,乙每次投籃投中的概率為,且各次投籃互不影響(1)求甲乙各投球一次,比賽結(jié)束的概率;(2)求甲獲勝的概率22.(10分)已知橢圓的右焦點為,且經(jīng)過點.(1)求橢圓的標準方程;(2)設(shè)橢圓的左頂點為,過點的直線(與軸不重合)交橢圓于兩點,直線交直線于點,若直線上存在另一點,使.求證:三點共線.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】設(shè)等比數(shù)列的首項為,公比,根據(jù)題意,由求解.【詳解】設(shè)等比數(shù)列的首項為,公比,由題意得:,即,解得,所以,故選:D2、A【解析】如圖,以PE,PF,PA分別為x,y,z軸建立空間直角坐標系,利用空間向量求解【詳解】由題意得,因為正方形ABCD的邊長為2,E,F(xiàn)分別為CD,CB的中點,所以,所以,所以所以PA,PE,PF三線互相垂直,故以PE,PF,PA分別為x,y,z軸建立空間直角坐標系,則,,,,設(shè),則由,,,得,解得,則設(shè)平面的法向量為,則,令,則,因為,所以AC與平面PCE所成角的正弦值,因為AC與平面PCE所成角為銳角,所以AC與平面PCE所成角為,故選:A3、B【解析】直接利用等差數(shù)列的求和公式及等差數(shù)列的性質(zhì)求解.【詳解】解:由題得.故選:B4、B【解析】自行車前后輪與撐腳分別接觸地面,使得自行車穩(wěn)定,此時自行車與地面的三個接觸點不在同一條線上.【詳解】自行車前后輪與撐腳分別接觸地面,此時三個接觸點不在同一條線上,所以可以確定一個平面,即地面,從而使得自行車穩(wěn)定.故選B項.【點睛】本題考查不共線的三個點確定一個平面,屬于簡單題.5、C【解析】先由圖像分析出的正負,直接解不等式即可得到答案.【詳解】由函數(shù)的圖象可知,在區(qū)間上單調(diào)遞減,在區(qū)間(0,2)上單調(diào)遞增,即當時,;當x∈(0,2)時,.因為可化為或,解得:0<x<2或x<0,所以不等式的解集為.故選:C6、D【解析】根據(jù)題意和直線的點方向式方程即可得出結(jié)果.【詳解】因為直線過點,且方向向量為,由直線的點方向式方程,可得直線的方程為:,整理,得.故選:D7、D【解析】由隨機數(shù)表法抽樣原理即可求出答案.【詳解】根據(jù)題意,依次讀出的數(shù)據(jù)為65(舍去),72(舍去),08,02,63(舍去),14,即第三個個體編號為14.故選:D.8、C【解析】先求出方程表示雙曲線時滿足的條件,然后根據(jù)“小推大”原則進行判斷即可.【詳解】因為方程為雙曲線方程,所以,所以“”是“方程為雙曲線方程”的充要條件.故選:C.9、D【解析】由題設(shè)可得,直線的方程為,點線距離公式表示到直線的距離,又聯(lián)立解得即可得出答案.【詳解】且,則△是等邊三角形,設(shè),則①,∴直線方程為,即,∴到直線的距離為②,又③,聯(lián)立①②③,解得,,故橢圓方程為.故選:D.10、A【解析】作出不等式對應的平面區(qū)域,利用線性規(guī)劃的知識,通過平移即可求出的最大值.【詳解】作出可行域如圖所示,由可知,此直線可用由直線平移得到,求的最大值,即直線的截距最大,當直線過直線的交點時取最大值,即故選:11、D【解析】設(shè)等比數(shù)列公比為,由已知結(jié)合等比數(shù)列的通項公式可求得,,代入即可求得結(jié)果.【詳解】設(shè)等比數(shù)列的公比為,由,得即,又,即又,,解得又等比數(shù)列的前3項和為3,故,即,解得故選:D12、B【解析】直接利用平均變化率的公式求解.【詳解】解:由題得.故選:B二、填空題:本題共4小題,每小題5分,共20分。13、4【解析】直接利用曲線的性質(zhì),對稱性的應用可判斷①②;求出可判斷③;聯(lián)立方程,解方程組可判斷④⑤的結(jié)論【詳解】對于①,將方程中的x換為﹣x,y換為﹣y,方程不變,曲線C關(guān)于原點對稱,故①正確;對于②,將方程中的x換為﹣y,把y換成﹣x,方程不變,曲線C關(guān)于直線x±y=0對稱,故②正確;對于③,由方程得,故曲線C不是封閉圖形,故③錯誤;對于④,曲線C:,不是封閉圖形,聯(lián)立整理可得:,方程無解,故④正確;對于⑤,曲線C與曲線D:由于,解得,根據(jù)對稱性,可得公共點為,故曲線C與曲線D有四個交點,這4點構(gòu)成正方形,故⑤正確故答案為:414、;【解析】設(shè)所求圓的圓心為,根據(jù)兩圓外切于原點可知兩圓心與原點共線,再根據(jù)弦長列出方程組求出即可.【詳解】設(shè)所求圓的圓心為,因為圓的圓心為,與原點連線的斜率為,又所求圓與已知圓外切于原點,,①所以所求圓的半徑滿足,又被y軸截得的弦長為8,②由①②解得,所以圓的方程為.故答案為:15、【解析】利用等差中項求解即可【詳解】由為等差數(shù)列,則,解得故答案為:16、【解析】先求函數(shù)的導數(shù),再利用導數(shù)的幾何意義求函數(shù)在處的切線方程.【詳解】,,,所以曲線在點處的切線方程為,即.故答案為:【點睛】本題考查導數(shù)的幾何意義,重點考查計算能力,屬于基礎(chǔ)題型.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)或【解析】(1)由兩條直線垂直可設(shè)直線的方程為,將點的坐標代入計算即可;(2)當直線過原點時,根據(jù)直線的點斜式方程即可得出結(jié)果;當直線不過原點時可設(shè)直線的方程為,將點的坐標代入計算即可.【小問1詳解】解:因為直線與直線垂直所以,設(shè)直線的方程為,因為直線過點,所以,解得,所以直線的方程為【小問2詳解】解:當直線過原點時,斜率為,由點斜式求得直線的方程是,即當直線不過原點時,設(shè)直線的方程為,把點代入方程得,所以直線的方程是綜上,所求直線的方程為或18、(1),,證明見解析(2),【解析】(1)根據(jù)遞推關(guān)系求出,,對遞推公式變形,即可得證;(2)結(jié)合(1)求得通項公式,分組求和.【小問1詳解】因為,且所以,,∵,∴,∵,∴,且,∴數(shù)列是等比數(shù)列.【小問2詳解】由(1)可知是以為首項,以3為公比的等比數(shù)列,即,即;.19、(1);(2).【解析】(1)根據(jù)已知條件,結(jié)合垂徑定理,以及點到直線的距離公式,即可求解(2)根據(jù)已知圓的方程,令y=0,結(jié)合韋達定理,求出圓心的橫坐標,即可求出圓心,再結(jié)合勾股定理,即可求出半徑【小問1詳解】∵圓C:,∴,即圓心為(-1,1),半徑r=3,∵直線y=x,即x-y=0,∴圓心(-1,1)到直線x-y=0的距離d=,∴直線y=x被圓C所截得的弦長為=【小問2詳解】設(shè)A(x1,y1),B(x2,y2),∵圓C:,圓C與x軸交于A,B兩點,∴x2-2x-7=0,則,|x1-x2|==,∴圓心的橫坐標為x=,∵圓心在直線y=x+1上,∴圓心為(1,2),∴半徑r=,故圓M的方程為20、(1),(2)【解析】(1)根據(jù)莖葉圖得甲班中位數(shù)為,由此能求出,根據(jù)由,且,能求出.(2)甲班86分以上有2人,乙班86分以有2人,從86分以上(不含86分)的同學中隨機抽出兩名,用列舉法寫出基本事件總數(shù),再利用古典概型的概率計算公式即可求解.【小問1詳解】根據(jù)莖葉圖可知1班中位數(shù)為86,則,又∵,且故【小問2詳解】由(1)可知,甲班86分以上有2人,乙班86以上有2人設(shè)甲班86分以上2人為,,乙班86分以上2人為,,從中任取兩名同學共有,,,,,共有6組基本事件,且每組出現(xiàn)都是等可能的記:“從86分以上(不含86分)的同學中隨機抽出兩名,兩人都來自甲班”為事件M,事件M包括:共1個基本事件,由古典概型的計算概率的公式知∴所以兩人都來自甲班的概率為21、(1)(2)【解析】(1)設(shè)事件“甲在第次投籃投中”,設(shè)事件“乙在第次投籃投中”,記“甲乙各投球一次,比賽結(jié)束”為事件,則,利用獨立事件和互斥事件的概率公式,即得解(2)記“甲獲勝”為事件,由題意,根據(jù)概率的加法公式和獨立事件的概率公式,即得解【小問1詳解】設(shè)事件“甲在第次投籃投中”,其中設(shè)事件“乙在第次投籃投中”,其中則,,其中記“甲乙各投球一次,比賽結(jié)束”為事件,,事件與事件相互獨立根據(jù)事件獨立性定義得:甲乙各投球一次,比賽結(jié)束的概率為【小問2詳解】記“甲獲勝”為事件,事件、事件、事件彼此互斥根據(jù)概率加法公式和事件獨立性定義得:甲獲勝的概率為22、(1);(2)證明見解析.【解析】(1)根據(jù)給定條件利用橢圓的定義求出軸長即可計算作答.(2)根據(jù)給定條件設(shè)出的方程,與橢圓C的方程

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論