版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
上海市實(shí)驗(yàn)學(xué)校2023-2024學(xué)年高二數(shù)學(xué)第一學(xué)期期末預(yù)測試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.下列導(dǎo)數(shù)運(yùn)算正確的是()A. B.C. D.2.已知,,若不等式恒成立,則正數(shù)的最小值是()A.2 B.4C.6 D.83.已知圓的方程為,圓的方程為,其中.那么這兩個(gè)圓的位置關(guān)系不可能為()A.外離 B.外切C.內(nèi)含 D.內(nèi)切4.已知隨機(jī)變量X的分布列如表所示,則()X123Pa2a3aA. B.C. D.5.函數(shù)在上的最大值是A. B.C. D.6.設(shè)雙曲線與橢圓:有公共焦點(diǎn),.若雙曲線經(jīng)過點(diǎn),設(shè)為雙曲線與橢圓的一個(gè)交點(diǎn),則的余弦值為()A. B.C. D.7.已知,,則的最小值為()A. B.C. D.8.已知雙曲線:的左、右焦點(diǎn)分別為,,過點(diǎn)且斜率為的直線與雙曲線在第二象限的交點(diǎn)為,若,則雙曲線的離心率是()A. B.C. D.9.已知定義在上的函數(shù)滿足:,且,則的解集為()A. B.C. D.10.已知,且,則的最大值為()A. B.C. D.11.設(shè)函數(shù),,,則()A. B.C. D.12.如圖,在三棱錐中,,則三棱錐外接球的表面積是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.斐波那契數(shù)列,又稱“兔子數(shù)列”,由數(shù)學(xué)家斐波那契研究兔子繁殖問題時(shí)引入.已知斐波那契數(shù)列滿足,,,若記,,則________.(用,表示)14.已知函數(shù)(1)求函數(shù)的最小正周期和單調(diào)遞增區(qū)間;(2)在銳角三角形中,角,,所對的邊分別為,,,若,,,求的面積15.橢圓C:的左、右焦點(diǎn)分別為,,P為橢圓上異于左右頂點(diǎn)的任意一點(diǎn),、的中點(diǎn)分別為M、N,O為坐標(biāo)原點(diǎn),四邊形OMPN的周長為4,則的周長是_____16.若恒成立,則______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)為了保證我國東海油氣田海域海上平臺的生產(chǎn)安全,海事部門在某平臺O的北偏西45°方向km處設(shè)立觀測點(diǎn)A,在平臺O的正東方向12km處設(shè)立觀測點(diǎn)B,規(guī)定經(jīng)過O、A、B三點(diǎn)的圓以及其內(nèi)部區(qū)域?yàn)榘踩A(yù)警區(qū).如圖所示:以O(shè)為坐標(biāo)原點(diǎn),O的正東方向?yàn)閤軸正方向,建立平面直角坐標(biāo)系(1)試寫出A,B的坐標(biāo),并求兩個(gè)觀測點(diǎn)A,B之間的距離;(2)某日經(jīng)觀測發(fā)現(xiàn),在該平臺O正南10kmC處,有一艘輪船正以每小時(shí)km的速度沿北偏東45°方向行駛,如果航向不變,該輪船是否會進(jìn)入安全預(yù)警區(qū)?如果不進(jìn)入,請說明理由;如果進(jìn)入,則它在安全警示區(qū)內(nèi)會行駛多長時(shí)間?18.(12分)已知?jiǎng)又本€l:(m+3)x-(m+2)y+m=0與圓C:(x-3)2+(y-4)2=9(1)求證:無論m為何值,直線l與圓C總相交(2)m為何值時(shí),直線l被圓C所截得的弦長最???請求出該最小值19.(12分)已知橢圓C:()過點(diǎn),且離心率為(1)求橢圓C的方程;(2)過點(diǎn)()的直線l(不與x軸重合)與橢圓C交于A,B兩點(diǎn),點(diǎn)C與點(diǎn)B關(guān)于x軸對稱,直線AC與x軸交于點(diǎn)Q,試問是否為定值?若是,請求出該定值,若不是,請說明理由20.(12分)如圖,四邊形是某半圓柱的軸截面(過上下底面圓心連線的截面),線段是該半圓柱的一條母線,點(diǎn)為線的中點(diǎn)(1)證明:;(2)若,且點(diǎn)到平面的距離為1,求線段的長21.(12分)已知函數(shù),且在處取得極值.(1)求的值;(2)當(dāng),求的最小值.22.(10分)已知的內(nèi)角A,B,C所對的邊分別為a,b,c,且(1)求;(2)若,求的面積的最大值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】利用基本初等函數(shù)的導(dǎo)數(shù)和復(fù)合函數(shù)的導(dǎo)數(shù),依次分析即得解【詳解】選項(xiàng)A,,錯(cuò)誤;選項(xiàng)B,,正確;選項(xiàng)C,,錯(cuò)誤;選項(xiàng)D,,錯(cuò)誤故選:B2、B【解析】由基本不等式求出的最小值,只需最小值大于等于18,得到關(guān)于的不等式,求解,即可得出結(jié)論.【詳解】,因?yàn)椴坏仁胶愠闪?,所以,即,解得,所?故選:B.【點(diǎn)睛】本題考查基本不等式的應(yīng)用,考查一元二次不等式的解法,屬于基礎(chǔ)題.3、C【解析】求出圓心距的取值范圍,然后利用圓心距與半徑的和差關(guān)系判斷.【詳解】由兩圓的標(biāo)準(zhǔn)方程可得,,,;則,所以兩圓不可能內(nèi)含.故選:C.4、C【解析】根據(jù)分布列性質(zhì)計(jì)算可得;【詳解】解:依題意,解得,所以;故選:C5、D【解析】求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間即可,結(jié)合函數(shù)的單調(diào)性求出的最大值即可【詳解】函數(shù)的導(dǎo)數(shù)令可得,可得上單調(diào)遞增,在單調(diào)遞減,函數(shù)在上的最大值是故選D【點(diǎn)睛】本題考查了函數(shù)的單調(diào)性、最值問題,是一道中檔題6、A【解析】求出雙曲線方程,根據(jù)橢圓和雙曲線的第一定義求出的長度,從而根據(jù)余弦定理求出的余弦值【詳解】由題得,雙曲線中,所以,雙曲線方程為:,假設(shè)在第一象限,根據(jù)橢圓和雙曲線的定義可得:,解得:,,所以根據(jù)余弦定理,故選:A7、B【解析】將代數(shù)式展開,然后利用基本不等式可求出該代數(shù)式的最小值.【詳解】,,由基本不等式得,當(dāng)且僅當(dāng)時(shí),等號成立.因此,的最小值為.故選B.【點(diǎn)睛】本題考查利用基本不等式求最值,在利用基本不等式時(shí)要注意“一正、二定、三相等”條件的成立,考查計(jì)算能力,屬于中等題.8、B【解析】根據(jù)得到三角形為等腰三角形,然后結(jié)合雙曲線的定義得到,設(shè),進(jìn)而作,得出,由此求出結(jié)果【詳解】因?yàn)?,所以,即所以,由雙曲線的定義,知,設(shè),則,易得,如圖,作,為垂足,則,所以,即,即雙曲線的離心率為.故選:B9、A【解析】令,利用導(dǎo)數(shù)可判斷其單調(diào)性,從而可解不等式.【詳解】設(shè),則,故為上的增函數(shù),而可化為即,故即,所以不等式的解集為,故選:A.10、A【解析】由基本不等式直接求解即可得到結(jié)果.【詳解】由基本不等式知;(當(dāng)且僅當(dāng)時(shí)取等號),的最大值為.故選:A.11、A【解析】根據(jù)導(dǎo)數(shù)得出在的單調(diào)性,進(jìn)而由單調(diào)性得出大小關(guān)系.【詳解】因?yàn)?,所以在上單調(diào)遞增.因?yàn)?,所以,而,所?因?yàn)?,且,所?即.故選:A12、A【解析】根據(jù)題意,將該幾何體放置于正方體中截得,進(jìn)而轉(zhuǎn)化為求邊長為2的正方體的外接球,再求解即可.【詳解】解:因?yàn)樵谌忮F中,,所以將三棱錐補(bǔ)形成正方體如圖所示,正方體的邊長為2,則體對角線長為,外接球的半徑為,所以外接球的表面積為,故選:.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由已知兩式相加求得,得,得到,從而得到,,利用可得答案.【詳解】因?yàn)?,由,,得,所以,得,因?yàn)?,所以,,所以,,所以?故答案為:.14、(1)最小正周期,,;(2)【解析】(1)根據(jù)降冪公式、輔助角公式化簡函數(shù)的解析式,再利用正弦型函數(shù)的最小正周期公式、單調(diào)性進(jìn)行求解即可;(2)根據(jù)特殊角的三角函數(shù)值,結(jié)合三角形面積公式進(jìn)行求解即可.【詳解】(1),所以的最小正周期令,,解得,,所以的單調(diào)遞增區(qū)間為,(2)因?yàn)?,所以,即,又,所以,所以或,或,?dāng)時(shí),,不符合題意,舍去;當(dāng)時(shí),,符合題意,所以,,,,此時(shí)為等腰三角形,所以,所以,即的面積為15、【解析】先證明則四邊形OMPN是平行四邊形,進(jìn)而根據(jù)橢圓定義求出a,再求出c,最后求出答案.【詳解】因?yàn)镸,O,N分別為的中點(diǎn),所以,則四邊形OMPN是平行四邊形,所以,由四邊形OMPN的周長為4可知,,即,則,于是的周長是.故答案為:.16、1【解析】利用導(dǎo)數(shù)研究的最小值為,再構(gòu)造研究其最值,即可確定參數(shù)a的值.【詳解】令,則且,當(dāng)時(shí),遞減;當(dāng)時(shí),遞增;所以,即在上恒成立,令,則,當(dāng)時(shí),遞增;當(dāng)時(shí),遞減;所以,綜上,.故答案為:1三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)會駛?cè)氚踩A(yù)警區(qū),行駛時(shí)長為半小時(shí)【解析】(1)先求出A,B的坐標(biāo),再由距離公式得出A,B之間的距離;(2)由三點(diǎn)的坐標(biāo)列出方程組得出經(jīng)過三點(diǎn)的圓的方程,設(shè)輪船航線所在的直線為,再由幾何法得出直線與圓截得的弦長,進(jìn)而得出安全警示區(qū)內(nèi)行駛時(shí)長.【小問1詳解】由題意得,∴;【小問2詳解】設(shè)圓的方程為,因?yàn)樵搱A經(jīng)過三點(diǎn),∴,得到.所以該圓方程為:,化成標(biāo)準(zhǔn)方程為:.設(shè)輪船航線所在的直線為,則直線的方程為:,圓心(6,8)到直線的距離,所以直線與圓相交,即輪船會駛?cè)氚踩A(yù)警區(qū).直線與圓截得的弦長為,行駛時(shí)長小時(shí).即在安全警示區(qū)內(nèi)行駛時(shí)長為半小時(shí).18、(1)詳見解析(2)m為-時(shí),截得的弦長最小,最小值為2【解析】(1)將直線l變形,可知直線l過定點(diǎn),證明定點(diǎn)在圓內(nèi)部;(2)利用垂徑定理和弦長公式可得.【詳解】(1)證明:直線l變形為m(x-y+1)+(3x-2y)=0令解得,如圖所示,故動直線l恒過定點(diǎn)A(2,3)而|AC|==<3(半徑)∴點(diǎn)A在圓內(nèi),故無論m取何值,直線l與圓C總相交(2)解:由平面幾何知識知,弦心距越大,弦長越小,即當(dāng)AC垂直直線l時(shí),弦長最小,此時(shí)kl·kAC=-1,即,∴m=-最小值為故m為-時(shí),直線l被圓C所截得的弦長最小,最小值為2【點(diǎn)睛】考查直線過定點(diǎn)、點(diǎn)與圓的位置關(guān)系以及弦長問題,解題的關(guān)鍵是直線系形式的轉(zhuǎn)化.19、(1)(2)為定值【解析】(1)由題意可得解方程組求出,從而可得橢圓方程,(2)設(shè)直線AB:,,代入橢圓方程,消去,利用根與系數(shù)關(guān)系,再表示出直線AC的方程,從而可求出點(diǎn)Q的坐標(biāo),從而可表示出,然后化簡可得結(jié)論【小問1詳解】由題意得解得故橢圓C的方程為;【小問2詳解】設(shè)直線AB:,,聯(lián)立消去y得,設(shè),,得,,因?yàn)辄c(diǎn)C與點(diǎn)B關(guān)于x軸對稱,所以,所以直線AC的斜率為,直線AC的方程,令,解得可得,所以,因?yàn)?,所以,所以為定值【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:此題考查橢圓方程的求法,考查直線與橢圓的位置關(guān)系,解題的關(guān)鍵是將直線AB的方程代入橢圓方程中化簡,利用根與系數(shù)關(guān)系,結(jié)合已知條件表示出直線AC的方程,從而可求出點(diǎn)Q的坐標(biāo),考查計(jì)算能力,屬于中檔題20、(1)證明見解析;(2).【解析】(1)先證明,,利用判定定理證明平面,從而得到;(2)設(shè),利用等體積法,由由,解出a.【詳解】(1)證明:由題意可知平面,平面∴∵所對為半圓直徑∴∴和是平面內(nèi)兩條相交直線∴平面平面∴(2)設(shè),因?yàn)?,且所以,設(shè),在等腰直角三角形中,取BC的中點(diǎn)E,連結(jié)AE,則,取BC1的中點(diǎn)為P,連結(jié)DP,∵,∴,又為的中點(diǎn),∴,∴,即的高為∴,∵,且∴平面,∵平面,且即到平面的距離為1,而由,即解得:,即.【點(diǎn)睛】立體幾何解答題(1)第一問一般是幾何關(guān)系的證明,用判定定理;(2)第二問是計(jì)算,求角或求距離(求體積通常需要先求距離).如果求體積,常用的方法有:(1)直接法;(2)等體積法;(3)補(bǔ)形法;(4)向量法.21、(1);(2).【解析】(1)對函數(shù)求導(dǎo),則極值點(diǎn)為導(dǎo)函數(shù)的零點(diǎn),進(jìn)而建立方程組解出a,b,然后討論函數(shù)的單調(diào)區(qū)間進(jìn)行驗(yàn)證,最后確定答案;(2)根據(jù)(1)得到函數(shù)在上的單調(diào)區(qū)間,進(jìn)而求出最小值.【小問1詳解】,因?yàn)樵谔幦〉脴O值,所以
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 人造板企業(yè)環(huán)境保護(hù)與污染治理技術(shù)考核試卷
- 中藥藥品專利申請與維權(quán)考核試卷
- 課程設(shè)計(jì)需求分析心得
- 貴陽護(hù)理課程設(shè)計(jì)
- 預(yù)應(yīng)力重力壩課程設(shè)計(jì)
- 咽腔潰瘍微生物組研究-洞察分析
- 維護(hù)管理體系優(yōu)化策略-洞察分析
- 飲食模式與代謝綜合征關(guān)聯(lián)-洞察分析
- 鏈輪制造課程設(shè)計(jì)
- 課程設(shè)計(jì)模具圖紙
- TSGD7002-2023-壓力管道元件型式試驗(yàn)規(guī)則
- 2024年度家庭醫(yī)生簽約服務(wù)培訓(xùn)課件
- 建筑工地節(jié)前停工安全檢查表
- 了不起的狐貍爸爸-全文打印
- 液相色譜質(zhì)譜質(zhì)譜儀LCMSMSSYSTEM
- 民辦非企業(yè)單位章程核準(zhǔn)表-空白表格
- 派克與永華互換表
- 第二章流體靜力學(xué)基礎(chǔ)
- 小學(xué)高年級語文作文情景互動教學(xué)策略探究教研課題論文開題中期結(jié)題報(bào)告教學(xué)反思經(jīng)驗(yàn)交流
- 春節(jié)新年紅燈籠中國風(fēng)信紙
- 注塑件生產(chǎn)通用標(biāo)準(zhǔn)
評論
0/150
提交評論