上海市上海市三林中學2023-2024學年數學高二上期末預測試題含解析_第1頁
上海市上海市三林中學2023-2024學年數學高二上期末預測試題含解析_第2頁
上海市上海市三林中學2023-2024學年數學高二上期末預測試題含解析_第3頁
上海市上海市三林中學2023-2024學年數學高二上期末預測試題含解析_第4頁
上海市上海市三林中學2023-2024學年數學高二上期末預測試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

上海市上海市三林中學2023-2024學年數學高二上期末預測試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設F是雙曲線的左焦點,,P是雙曲線右支上的動點,則的最小值為()A.5 B.C. D.92.若方程表示圓,則實數m的取值范圍為()A B.C. D.3.已知,則在方向上的投影為()A. B.C. D.4.設正方體的棱長為,則點到平面的距離是()A. B.C. D.5.等差數列前項和,已知,,則的值是().A. B.C. D.6.若復數滿足,則復數對應的點的軌跡圍成圖形的面積等于()A. B.C. D.7.對數的創(chuàng)始人約翰·奈皮爾(JohnNapier,1550-1617)是蘇格蘭數學家.直到18世紀,瑞士數學家歐拉發(fā)現了指數與對數的互逆關系,人們才認識到指數與對數之間的天然關系對數發(fā)現前夕,隨著科技的發(fā)展,天文學家做了很多的觀察,需要進行很多計算,特別是大數的連乘,需要花費很長時間.基于這種需求,1594年,奈皮爾運用了獨創(chuàng)的方法構造出對數方法.現在隨著科學技術的需要,一些冪的值用數位表示,譬如,所以的數位為4.那么的數位是()(注)A.6 B.7C.606 D.6078.若x,y滿足約束條件,則的最大值為()A.1 B.0C.?1 D.?39.已知向量,.若,則()A. B.C. D.10.已知圓的圓心在軸上,半徑為2,且與直線相切,則圓的方程為A. B.或C. D.或11.已知,為橢圓上關于短軸對稱的兩點,、分別為橢圓的上、下頂點,設,、分別為直線,的斜率,則的最小值為()A. B.C. D.12.已知函數,的導函數,的圖象如圖所示,則的極值情況為()A.2個極大值,1個極小值 B.1個極大值,1個極小值C.1個極大值,2個極小值 D.1個極大值,無極小值二、填空題:本題共4小題,每小題5分,共20分。13.已知線段AB的長度為3,其兩個端點A,B分別在x軸、y軸上滑動,點M滿足.則點M的軌跡方程為______14.設直線,直線,若,則_______.15.根據某市有關統(tǒng)計公報顯示,隨著“一帶一路”經貿合作持續(xù)深化,該市對外貿易近幾年持續(xù)繁榮,2017年至2020年每年進口總額x(單位:千億元)和出口總額y(單位:千億元)之間一組數據如下:2017年2018年2019年2020年x1.82.22.63.0y2.02.83.24.0若每年的進出口總額x,y滿足線性相關關系,則______;若計劃2022年出口總額達到5千億元,預計該年進口總額為______千億元16.如圖是一個邊長為4的正方形二維碼,為了測算圖中黑色部分的面積,在正方形區(qū)域內隨機投擲1600個點,其中落入白色部分的有700個點,據此可估計黑色部分的面積為______________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓:的長軸長為6,離心率為,長軸的左,右頂點分別為A,B(1)求橢圓的方程;(2)已知過點的直線交橢圓于M、N兩個不同的點,直線AM,AN分別交軸于點S、T,記,(為坐標原點),當直線的傾斜角為銳角時,求的取值范圍18.(12分)求下列不等式的解集:(1);(2)19.(12分)公差不為零的等差數列中,已知其前n項和為,若,且成等比數列(1)求數列的通項;(2)當時,求數列的前n和20.(12分)已知函數(1)求f(x)在點處的切線方程;(2)求證:21.(12分)已知曲線上任意一點滿足方程,(1)求曲線的方程;(2)若直線與曲線在軸左、右兩側的交點分別是,且,求的最小值.22.(10分)若函數在區(qū)間上的最大值為9,最小值為1.(1)求a,b的值;(2)若方程在上有兩個不同的解,求實數k的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】由雙曲線的的定義可得,于是將問題轉化為求的最小值,由得出答案.【詳解】設雙曲線的由焦點為,且點A在雙曲線的兩支之間.由雙曲線的定義可得,即所以當且僅當三點共線時,取得等號.故選:B2、D【解析】根據,解不等式即可求解.【詳解】由方程表示圓,則,解得.所以實數m的取值范圍為.故選:D3、C【解析】利用向量數量積的幾何意義即得【詳解】,故在方向上的投影為:故選:C4、D【解析】建立空間直角坐標系,根據空間向量所學點到面的距離公式求解即可.【詳解】建立如下圖所示空間直角坐標系,以為坐標原點,所在直線為軸,所在直線為軸,所在直線為軸.因為正方體的邊長為4,所以,,,,,所以,,,設平面的法向量,所以,,即,設,所以,,即,設點到平面的距離為,所以,故選:D.5、C【解析】由題意,設等差數列的公差為,則,故,故,故選6、D【解析】利用復數的幾何意義,即可判斷軌跡圖形,再求面積.【詳解】復數滿足,表示復數對應的點的軌跡是以點為圓心,半徑為3的圓,所以圍成圖形的面積等于.故選:D7、D【解析】根據已知條件,設,則,求出t的范圍,即可判斷其數位.【詳解】設,則,則,則,,的數位是607.故選:D.8、B【解析】先畫出可行域,由,得,作出直線,過點時,取得最大值,求出點的坐標代入目標函數中可得答案【詳解】不等式組表示的可行域如圖所示,由,得,作出直線,過點時,取得最大值,由,得,即,所以的最大值為,故選:B9、A【解析】根據給定條件利用空間向量平行的坐標表示直接計算作答.【詳解】向量,,因,則,解得,所以,B,D都不正確;,C不正確,A正確.故選:A10、D【解析】設圓心坐標,由點到直線距離公式可得或,進而求得答案【詳解】設圓心坐標,因為圓與直線相切,所以由點到直線的距離公式可得,解得或.因此圓的方程為或.【點睛】本題考查利用直線與圓的位置關系求圓的方程,屬于一般題11、A【解析】設出點,的坐標,并表示出兩個斜率、,把代數式轉化成與點的坐標相關的代數式,再與橢圓有公共點解決即可.【詳解】橢圓中:,設則,則,,令,則它對應直線由整理得由判別式解得即,則的最小值為故選:A12、B【解析】根據圖象判斷的正負,再根據極值的定義分析判斷即可【詳解】由,得,令,由圖可知的三個根即為與的交點的橫坐標,當時,,當時,,即,所以為的極大值點,為的極大值,當時,,即,所以為的極小值點,為的極小值,故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】設出動點,根據已知條件得到關于的方程.【詳解】設,由,有,得,所以,由得:,所以點的軌跡的方程是.故答案為:14、##0.5【解析】根據兩直線平行可得,,即可求出【詳解】依題可得,,解得故答案為:15、①.1.6;②.3.65.【解析】根據給定數表求出樣本中心點,代入即可求得,取可求出該年進口總額.詳解】由數表得:,,因此,回歸直線過點,由,解得,此時,,當時,即,解得,所以,預計該年進口總額為千億元.故答案為:1.6;3.6516、9【解析】先根據點數求解概率,再結合幾何概型求解黑色部分的面積【詳解】由題設可估計落入黑色部分概率設黑色部分的面積為,由幾何概型計算公式可得解得故答案為:9三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)根據橢圓的長軸和離心率,可求得,進而得橢圓方程;(2)先判斷直線斜率為正,然后設出直線方程,和橢圓方程聯立,整理得根與系數的關系,利用直線方程求出點S、T的坐標,再根據確定的表達式,將根與系數的關系式代入化簡,求得結果.【小問1詳解】由題意可得:解得:,所以橢圓的方程:【小問2詳解】當直線l的傾斜角為銳角時,設,設直線,由得,從而,又,得,所以,又直線的方程是:,令,解得,所以點S為;直線的方程是:,同理點T為·所以,因為,所以,所以∵,∴,綜上,所以的范圍是18、(1)(2)【解析】(1)利用一元二次不等式的解法求解;(2)利用分式不等式的解法求解.【小問1詳解】解:因為,所以,解得,所以不等式的解集是;【小問2詳解】因為,所以,所以,即,解得,所以不等式的解集是.19、(1)(2)【解析】(1)根據等差數列的性質,結合題意,可求得值,根據成等比數列,即可求得d值,代入等差數列通項公式,即可得答案;(2)由(1)可求得,即可得表達式,根據裂項相消求和法,即可得答案.【小問1詳解】設等差數列的公差為,由等差數列性質可得,解得,又成等比數列,所以,整理得,因為,所以,所以【小問2詳解】由(1)可得,則,所以,所以20、(1);(2)證明見解析【解析】(1)求導,進而得到,,寫出切線方程;(2)將轉化為,設,,利用導數法證明.【詳解】(1)函數的定義域是,可得又,所以f(x)在點處的切線方程為整理得(或斜截式方程)(2)要證只需證因為,所以不等式等價于設,,;所以在單調遞減,在單調遞增故又,;所以在單調遞增,在單調遞減故因為且兩個函數的最值點不相等所以有,原不等式得證21、(1)(2)8【解析】(1)根據雙曲線的定義即可得出答案;(2)可設直線的方程為,則直線的方程為,由,求得,同理求得,從而可求得的值,再結合基本不等式即可得出答案.【小問1詳解】解:設,則,等價于,曲線為以為焦點的雙曲線,且實軸長為2,焦距為,故曲線的方程為:;【小問2詳解】解:由題意可得直線的斜率存在且不為0,可設直線的方程

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論