七年級數(shù)學(xué)下冊期末幾何壓軸題試題(帶答案)_第1頁
七年級數(shù)學(xué)下冊期末幾何壓軸題試題(帶答案)_第2頁
七年級數(shù)學(xué)下冊期末幾何壓軸題試題(帶答案)_第3頁
七年級數(shù)學(xué)下冊期末幾何壓軸題試題(帶答案)_第4頁
七年級數(shù)學(xué)下冊期末幾何壓軸題試題(帶答案)_第5頁
已閱讀5頁,還剩39頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

一、解答題1.在平面直角坐標系中,已知長方形,點,.(1)如圖,有一動點在第二象限的角平分線上,若,求的度數(shù);(2)若把長方形向上平移,得到長方形.①在運動過程中,求的面積與的面積之間的數(shù)量關(guān)系;②若,求的面積與的面積之比.2.如圖,已知直線射線CD,.P是射線EB上一動點,過點P作PQEC交射線CD于點Q,連接CP.作,交直線AB于點F,CG平分.(1)若點P,F(xiàn),G都在點E的右側(cè),求的度數(shù);(2)若點P,F(xiàn),G都在點E的右側(cè),,求的度數(shù);(3)在點P的運動過程中,是否存在這樣的情形,使?若存在,求出的度數(shù);若不存在,請說明理由.3.如圖1,把一塊含30°的直角三角板ABC的BC邊放置于長方形直尺DEFG的EF邊上.(1)根據(jù)圖1填空:∠1=°,∠2=°;(2)現(xiàn)把三角板繞B點逆時針旋轉(zhuǎn)n°.①如圖2,當n=25°,且點C恰好落在DG邊上時,求∠1、∠2的度數(shù);②當0°<n<180°時,是否會存在三角板某一邊所在的直線與直尺(有四條邊)某一邊所在的直線垂直?如果存在,請直接寫出所有n的值和對應(yīng)的那兩條垂線;如果不存在,請說明理由.4.(1)(問題)如圖1,若,,.求的度數(shù);(2)(問題遷移)如圖2,,點在的上方,問,,之間有何數(shù)量關(guān)系?請說明理由;(3)(聯(lián)想拓展)如圖3所示,在(2)的條件下,已知,的平分線和的平分線交于點,用含有的式子表示的度數(shù).5.已知,AB∥CD,點E為射線FG上一點.(1)如圖1,若∠EAF=25°,∠EDG=45°,則∠AED=.(2)如圖2,當點E在FG延長線上時,此時CD與AE交于點H,則∠AED、∠EAF、∠EDG之間滿足怎樣的關(guān)系,請說明你的結(jié)論;(3)如圖3,當點E在FG延長線上時,DP平分∠EDC,∠AED=32°,∠P=30°,求∠EKD的度數(shù).6.已知直線AB//CD,點P、Q分別在AB、CD上,如圖所示,射線PB按逆時針方向以每秒12°的速度旋轉(zhuǎn)至PA便立即回轉(zhuǎn),并不斷往返旋轉(zhuǎn);射線QC按逆時針方向每秒3°旋轉(zhuǎn)至QD停止,此時射線PB也停止旋轉(zhuǎn).(1)若射線PB、QC同時開始旋轉(zhuǎn),當旋轉(zhuǎn)時間10秒時,PB'與QC'的位置關(guān)系為;(2)若射線QC先轉(zhuǎn)15秒,射線PB才開始轉(zhuǎn)動,當射線PB旋轉(zhuǎn)的時間為多少秒時,PB′//QC′.7.我們已經(jīng)學(xué)習了“乘方”運算,下面介紹一種新運算,即“對數(shù)”運算.定義:如果(a>0,a≠1,N>0),那么b叫做以a為底N的對數(shù),記作.例如:因為,所以;因為,所以.根據(jù)“對數(shù)”運算的定義,回答下列問題:(1)填空:,.(2)如果,求m的值.(3)對于“對數(shù)”運算,小明同學(xué)認為有“(a>0,a≠1,M>0,N>0)”,他的說法正確嗎?如果正確,請給出證明過程;如果不正確,請說明理由,并加以改正.8.三個自然數(shù)x、y、z組成一個有序數(shù)組,如果滿足,那么我們稱數(shù)組為“蹦蹦數(shù)組”.例如:數(shù)組中,故是“蹦蹦數(shù)組”;數(shù)組中,故不是“蹦蹦數(shù)組”.(1)分別判斷數(shù)組和是否為“蹦蹦數(shù)組”;(2)s和t均是三位數(shù)的自然數(shù),其中s的十位數(shù)字是3,個位數(shù)字是2,t的百位數(shù)字是2,十位數(shù)字是5,且.是否存在一個整數(shù)b,使得數(shù)組為“蹦蹦數(shù)組”.若存在,求出b的值;若不存在,請說明理由;(3)有一個三位數(shù)的自然數(shù),百位數(shù)字是1,十位數(shù)字是p,個位數(shù)字是q,若數(shù)組為“蹦蹦數(shù)組”,且該三位數(shù)是7的倍數(shù),求這個三位數(shù).9.閱讀材料:求1+2+22+23+24+…+22017的值.解:設(shè)S=1+2+22+23+24+…+22017,將等式兩邊同時乘以2得:2S=2+22+23+24+…+22017+22018將下式減去上式得2S-S=22018-1即S=22018-1即1+2+22+23+24+…+22017=22018-1請你仿照此法計算:(1)1+2+22+23+…+29=_____;(2)1+5+52+53+54+…+5n(其中n為正整數(shù));(3)1+2×2+3×22+4×23+…+9×28+10×29.10.定義:如果,那么稱b為n的布谷數(shù),記為.例如:因為,所以,因為,所以.(1)根據(jù)布谷數(shù)的定義填空:g(2)=________________,g(32)=___________________.(2)布谷數(shù)有如下運算性質(zhì):若m,n為正整數(shù),則,.根據(jù)運算性質(zhì)解答下列各題:①已知,求和的值;②已知.求和的值.11.閱讀下面的文字,解答問題大家知道是無理數(shù),而無理數(shù)是無限不循環(huán)小數(shù),因此的小數(shù)部分我們不可能全部地寫出來,于是小明用﹣1來表示的小數(shù)部分,你同意小明的表示方法嗎?事實上,小明的表示方法是有道理的,因為的整數(shù)部分是1,將這個數(shù)減去其整數(shù)部分,差就是小數(shù)部分.又例如:<<,即2<<3,∴的整數(shù)部分為2,小數(shù)部分為(﹣2)請解答:(1)整數(shù)部分是,小數(shù)部分是.(2)如果的小數(shù)部分為a,的整數(shù)部分為b,求|a﹣b|+的值.(3)已知:9+=x+y,其中x是整數(shù),且0<y<1,求x﹣y的相反數(shù).12.我們已經(jīng)學(xué)習了“乘方”運算,下面介紹一種新運算,即“對數(shù)”運算.定義:如果(a>0,a≠1,N>0),那么b叫做以a為底N的對數(shù),記作.例如:因為,所以;因為,所以.根據(jù)“對數(shù)”運算的定義,回答下列問題:(1)填空:,.(2)如果,求m的值.(3)對于“對數(shù)”運算,小明同學(xué)認為有“(a>0,a≠1,M>0,N>0)”,他的說法正確嗎?如果正確,請給出證明過程;如果不正確,請說明理由,并加以改正.13.如圖,在長方形中,為平面直角坐標系的原點,點的坐標為,點的坐標為且、滿足,點在第一象限內(nèi),點從原點出發(fā),以每秒2個單位長度的速度沿著的線路移動.(1)點的坐標為___________;當點移動5秒時,點的坐標為___________;(2)在移動過程中,當點到軸的距離為4個單位長度時,求點移動的時間;(3)在的線路移動過程中,是否存在點使的面積是20,若存在直接寫出點移動的時間;若不存在,請說明理由.14.問題情境:(1)如圖1,,,.求度數(shù).小穎同學(xué)的解題思路是:如圖2,過點作,請你接著完成解答.問題遷移:(2)如圖3,,點在射線上運動,當點在、兩點之間運動時,,.試判斷、、之間有何數(shù)量關(guān)系?(提示:過點作),請說明理由;(3)在(2)的條件下,如果點在、兩點外側(cè)運動時(點與點、、三點不重合),請你猜想、、之間的數(shù)量關(guān)系并證明.15.如圖1,在平面直角坐標系中,點A為x軸負半軸上一點,點B為x軸正半軸上一點,C(0,a),D(b,a),其中a,b滿足關(guān)系式:|a+3|+(b-a+1)2=0.(1)a=___,b=___,△BCD的面積為______;(2)如圖2,若AC⊥BC,點P線段OC上一點,連接BP,延長BP交AC于點Q,當∠CPQ=∠CQP時,求證:BP平分∠ABC;(3)如圖3,若AC⊥BC,點E是點A與點B之間一動點,連接CE,CB始終平分∠ECF,當點E在點A與點B之間運動時,的值是否變化?若不變,求出其值;若變化,請說明理由.16.某電器超市銷售每臺進價分別為200元、170元的A、B兩種型號的電風扇,下表是近兩周的銷售情況:(進價、售價均保持不變,利潤=銷售收入-進貨成本)(1)求A、B兩種型號的電風扇的銷售單價;(2)若超市準備用不多于5400元的金額再采購這兩種型號的電風扇共30臺,求A種型號的電風扇最多能采購多少臺?(3)在(2)的條件下,超市銷售完這30臺電風扇能否實現(xiàn)利潤為1400元的目標?若能,請給出相應(yīng)的采購方案;若不能,請說明理由.17.問題情境:在平面直角坐標系xOy中有不重合的兩點A(x1,y1)和點B(x2,y2),小明在學(xué)習中發(fā)現(xiàn),若x1=x2,則AB∥y軸,且線段AB的長度為|y1﹣y2|;若y1=y(tǒng)2,則AB∥x軸,且線段AB的長度為|x1﹣x2|;(應(yīng)用):(1)若點A(﹣1,1)、B(2,1),則AB∥x軸,AB的長度為.(2)若點C(1,0),且CD∥y軸,且CD=2,則點D的坐標為.(拓展):我們規(guī)定:平面直角坐標系中任意不重合的兩點M(x1,y1),N(x2,y2)之間的折線距離為d(M,N)=|x1﹣x2|+|y1﹣y2|;例如:圖1中,點M(﹣1,1)與點N(1,﹣2)之間的折線距離為d(M,N)=|﹣1﹣1|+|1﹣(﹣2)|=2+3=5.解決下列問題:(1)如圖1,已知E(2,0),若F(﹣1,﹣2),則d(E,F(xiàn));(2)如圖2,已知E(2,0),H(1,t),若d(E,H)=3,則t=.(3)如圖3,已知P(3,3),點Q在x軸上,且三角形OPQ的面積為3,則d(P,Q)=.18.在平面直角坐標系中,為坐標原點.已知兩點,且、滿足;若四邊形為平行四邊形,且,點在軸上.(1)如圖①,動點從點出發(fā),以每秒個單位長度沿軸向下運動,當時間為何值時,三角形的面積等于平行四邊形面積的四分之一;(2)如圖②,當從點出發(fā),沿軸向上運動,連接、,、、存在什么樣的數(shù)量關(guān)系,請說明理由(排除在和兩點的特殊情況).19.學(xué)校將20××年入學(xué)的學(xué)生按入學(xué)年份、年級、班級、班內(nèi)序號的順序給每一位學(xué)生編號,如2015年入學(xué)的8年級3班的46號學(xué)生的編號為15080346.張山同學(xué)模仿二維碼的方式給學(xué)生編號設(shè)計了一套身份識別系統(tǒng),在5×5的正方形風格中,黑色正方形表示數(shù)字1,白色正方形表示數(shù)字0.我們把從上往下數(shù)第i行、從左往右數(shù)第j列表示的數(shù)記為aij,(其中,i、j=1,2,3,4,5),規(guī)定Ai=16ai1+8ai2+4ai3+2ai4+ai5.(1)若A1表示入學(xué)年份,A2表示所在年級,A3表示所在班級,A4表示編號的十位數(shù)字,A5表示編號的個位數(shù)字.①圖1是張山同學(xué)的身份識別圖案,請直接寫出張山同學(xué)的編號;②請在圖2中畫出2018年入學(xué)的9年級5班的39號同學(xué)的身份識別圖案;(2)張山同學(xué)又設(shè)計了一套信息加密系統(tǒng),其中A1表示入學(xué)年份加8,A2表示所在年級的數(shù)減6再加上所在班級的數(shù),A3表示所在年級的數(shù)乘2后減3再減所在班級的數(shù),將編號(班內(nèi)序號)的末兩位單列出來,作為一個兩位數(shù),個位與十位數(shù)字對換后再加2,所得結(jié)果的十位數(shù)字用A4表示、個位數(shù)字用A5表示.例如:2018年9年級5班的39號同學(xué),其加密后的身份識別圖案中,A1=18+8=26,A2=9-6+5=8,A3=9×2-3-5=10,93+2=95,所以A4=9,A5=5,所以其加密后的身份識別(26081095)圖案如圖3所示.圖4是李思同學(xué)加密后的身份識別圖案,請求出李思同學(xué)的編號.20.如圖,學(xué)校印刷廠與A,D兩地有公路、鐵路相連,從A地購進一批每噸8000元的白紙,制成每噸10000元的作業(yè)本運到D地批發(fā),已知公路運價1.5元/(t?km),鐵路運價1.2元/(t?km).這兩次運輸支出公路運費4200元,鐵路運費26280元.(1)白紙和作業(yè)本各多少噸?(2)這批作業(yè)本的銷售款比白紙的購進款與運輸費的和多多少元?21.判斷下面方程組的解法是否正確,如果全部正確,判斷即可;如果有錯誤,請寫出正確的解題過程.解:①×2-②×3,得,解得,把代入方程①,得,解得.∴原方程組的解為22.為了加強公民的節(jié)水意識,合理利用水資源,某城市規(guī)定用水收費標準如下:每戶每月用水量不超過6米3時,水費按a元/米3收費;每戶每月用水量超過6米3時,不超過的部分每立方米仍按a元收費,超過的部分按c元/米3收費,該市某用戶今年3、4月份的用水量和水費如下表所示:月份用水量(m3)收費(元)357.54927(1)求a、c的值,并寫出每月用水量不超過6米3和超過6米3時,水費與用水量之間的關(guān)系式;(2)已知某戶5月份的用水量為8米3,求該用戶5月份的水費.23.一個四位正整數(shù),若其千位上與百位上的數(shù)字之和等于十位上與個位上的數(shù)字之和,都等于k,那么稱這個四位正整數(shù)為“k類誠勤數(shù)”,例如:2534,因為,所以2534是“7類誠勤數(shù)”.(1)請判斷7441和5436是否為“誠勤數(shù)”并說明理由;(2)若一個四位正整數(shù)A為“5類誠勤數(shù)”且能被13整除,請求出的所有可能取值.24.七年(1)(2)兩班各40人參加垃圾分類知識競賽,規(guī)則如圖.比賽中,所有同學(xué)均按要求一對一連線,無多連、少連.(1)分數(shù)5,10,15,20中,每人得分不可能是________分.(2)七年(1)班有4人全錯,其余成員中,滿分人數(shù)是未滿分人數(shù)的2倍;七年(2)班所有人都得分,最低分人數(shù)的2倍與其他未滿分人數(shù)之和等于滿分人數(shù).①問(1)班有多少人得滿分?②若(1)班除0分外,最低得分人數(shù)與其他未滿分人數(shù)相等,問哪個班的總分高?25.閱讀材料:關(guān)于x,y的二元一次方程ax+by=c有一組整數(shù)解,則方程ax+by=c的全部整數(shù)解可表示為(t為整數(shù)).問題:求方程7x+19y=213的所有正整數(shù)解.小明參考閱讀材料,解決該問題如下:解:該方程一組整數(shù)解為,則全部整數(shù)解可表示為(t為整數(shù)).因為解得.因為t為整數(shù),所以t=0或-1.所以該方程的正整數(shù)解為和.(1)方程3x-5y=11的全部整數(shù)解表示為:(t為整數(shù)),則=;(2)請你參考小明的解題方法,求方程2x+3y=24的全部正整數(shù)解;(3)方程19x+8y=1908的正整數(shù)解有多少組?請直接寫出答案.26.如圖,在平面直角坐標系中,軸,軸,且,動點從點出發(fā),以每秒的速度,沿路線向點運動;動點從點出發(fā),以每秒的速度,沿路線向點運動.若兩點同時出發(fā),其中一點到達終點時,運動停止.(Ⅰ)直接寫出三個點的坐標;(Ⅱ)設(shè)兩點運動的時間為秒,用含的式子表示運動過程中三角形的面積;(Ⅲ)當三角形的面積的范圍小于16時,求運動的時間的范圍.27.閱讀下列材料:問題:已知x﹣y=2,且x>1,y<0解:∵x﹣y=2.∴x=y(tǒng)+2,又∵x>1∴y+2>1∴y>﹣1又∵y<0∴﹣1<y<0①∴﹣1+2<y+2<0+2即1<x<2②①+②得﹣1+1<x+y<0+2∴x+y的取值范圍是0<x+y<2請按照上述方法,完成下列問題:(1)已知x﹣y=3,且x>﹣1,y<0,則x的取值范圍是;x+y的取值范圍是;(2)已知x﹣y=a,且x<﹣b,y>2b,根據(jù)上述做法得到-2<3x-y<10,求a、b的值.28.閱讀材料:如果x是一個有理數(shù),我們把不超過x的最大整數(shù)記作.例如,,,,那么,,其中.例如,,,.請你解決下列問題:(1)__________,__________;(2)如果,那么x的取值范圍是__________;(3)如果,那么x的值是__________;(4)如果,其中,且,求x的值.29.(發(fā)現(xiàn)問題)已知,求的值.方法一:先解方程組,得出,的值,再代入,求出的值.方法二:將①②,求出的值.(提出問題)怎樣才能得到方法二呢?(分析問題)為了得到方法二,可以將①②,可得.令等式左邊,比較系數(shù)可得,求得.(解決問題)(1)請你選擇一種方法,求的值;(2)對于方程組利用方法二的思路,求的值;(遷移應(yīng)用)(3)已知,求的范圍.30.如圖,平面直角坐標系中,點的坐標是,點在軸的正半軸上,的面積等于18.(1)求點的坐標;(2)如圖,點從點出發(fā),沿軸正方向運動,點運動至點停止,同時點從點出發(fā),沿軸正方向運動,點運動至點停止,點、點的速度都為每秒1個單位,設(shè)運動時間為秒,的面積為,求用含的式子表示,并直接寫出的取值范圍;(3)在(2)的條件下,過點作,連接并延長交于,連接交于點,若,求值及點的坐標.【參考答案】***試卷處理標記,請不要刪除一、解答題1.(1)55°或35°;(2)①;②.【解析】【分析】(1)分兩種情況:①在Rt△FEC中,求出∠FEC=90°-10°=80°,然后根據(jù)點在第二象限的角平分線上,得出∠POE=45°,對頂角相等,即可得出∠CPO=180°-80°-45°=55°;②由已知條件,得出∠CEO=45°,又根據(jù)∠CEO=∠CPE+∠PCB,得出∠CPO;(2)①首先設(shè)長方形向上平移個單位長,得到長方形,然后列出和的面積,即可得出兩者的數(shù)量關(guān)系;②首先根據(jù)已知條件判定四邊形是平行四邊形,經(jīng)過等量轉(zhuǎn)化,即可得出和的面積,進而得出其面積之比.【詳解】(1)分兩種情況:①令PC交x軸于點E,延長CB至x軸,交于點F,如圖所示:由已知得,,∠CFE=90°∴∠FEC=90°-10°=80°,又∵點在第二象限的角平分線上,∴∠POE=45°又∵∠FEC=∠PEO=80°∴∠CPO=180°-80°-45°=55°②延長CB,交直線l于點E,由已知得,,∵點在第二象限的角平分線上,∴∠CEO=45°∴∠CEO=∠CPE+∠PCB∴∠CPO=45°-10°=35°.故答案為55°或35°.(2)如圖,①設(shè)長方形向上平移個單位長,得到長方形∴②∵長方形,∴∵,令交于E,則四邊形是平行四邊形,∴∴又∵由①得知,∴∴.【點睛】此題主要考查等量轉(zhuǎn)換和平行四邊形的判定以及性質(zhì),熟練掌握,即可解題.2.(1)40°;(2)65°;(3)存在,56°或20°【分析】(1)依據(jù)平行線的性質(zhì)以及角平分線的定義,即可得到∠PCG的度數(shù);(2)依據(jù)平行線的性質(zhì)以及角平分線的定義,即可得到∠ECG=∠GCF=25°,再根據(jù)PQ∥CE,即可得出∠CPQ=∠ECP=65°;(3)設(shè)∠EGC=4x,∠EFC=3x,則∠GCF=4x-3x=x,分兩種情況討論:①當點G、F在點E的右側(cè)時,②當點G、F在點E的左側(cè)時,依據(jù)等量關(guān)系列方程求解即可.【詳解】解:(1)∵∠CEB=100°,AB∥CD,∴∠ECQ=80°,∵∠PCF=∠PCQ,CG平分∠ECF,∴∠PCG=∠PCF+∠FCG=∠QCF+∠FCE=∠ECQ=40°;(2)∵AB∥CD∴∠QCG=∠EGC,∠QCG+∠ECG=∠ECQ=80°,∴∠EGC+∠ECG=80°,又∵∠EGC-∠ECG=30°,∴∠EGC=55°,∠ECG=25°,∴∠ECG=∠GCF=25°,∠PCF=∠PCQ=(80°-50°)=15°,∵PQ∥CE,∴∠CPQ=∠ECP=65°;(3)設(shè)∠EGC=4x,∠EFC=3x,則∠GCF=∠FCD=4x-3x=x,①當點G、F在點E的右側(cè)時,則∠ECG=x,∠PCF=∠PCD=x,∵∠ECD=80°,∴x+x+x+x=80°,解得x=16°,∴∠CPQ=∠ECP=x+x+x=56°;②當點G、F在點E的左側(cè)時,則∠ECG=∠GCF=x,∵∠CGF=180°-4x,∠GCQ=80°+x,∴180°-4x=80°+x,解得x=20°,∴∠FCQ=∠ECF+∠ECQ=40°+80°=120°,∴∠PCQ=∠FCQ=60°,∴∠CPQ=∠ECP=80°-60°=20°.【點睛】本題主要考查了平行線的性質(zhì),解題時注意:兩直線平行,同旁內(nèi)角互補;兩直線平行,內(nèi)錯角相等.3.(1)120,90;(2)①∠1=120°-n°,∠2=90°+n°;②見解析【分析】(1)根據(jù)鄰補角的定義和平行線的性質(zhì)解答;(2)①根據(jù)鄰補角的定義求出∠ABE,再根據(jù)兩直線平行,同位角相等可得∠1=∠ABE,根據(jù)兩直線平行,同旁內(nèi)角互補求出∠BCG,然后根據(jù)周角等于360°計算即可得到∠2;②結(jié)合圖形,分AB、BC、AC三條邊與直尺垂直討論求解.【詳解】解:(1)∠1=180°-60°=120°,∠2=90°;故答案為:120,90;(2)①如圖2,∵∠ABC=60°,∴∠ABE=180°-60°-n°=120°-n°,∵DG∥EF,∴∠1=∠ABE=120°-n°,∠BCG=180°-∠CBF=180°-n°,∵∠ACB+∠BCG+∠2=360°,∴∠2=360°-∠ACB-∠BCG=360°-90°-(180°-n°)=90°+n°;②當n=30°時,∵∠ABC=60°,∴∠ABF=30°+60°=90°,AB⊥DG(EF);當n=90°時,∠C=∠CBF=90°,∴BC⊥DG(EF),AC⊥DE(GF);當n=120°時,∴AB⊥DE(GF).【點睛】本題考查了平行線角的計算,垂線的定義,主要利用了平行線的性質(zhì),直角三角形的性質(zhì),讀懂題目信息并準確識圖是解題的關(guān)鍵.4.(1)90°;(2)∠PFC=∠PEA+∠P;(3)∠G=α【分析】(1)根據(jù)平行線的性質(zhì)與判定可求解;(2)過P點作PN∥AB,則PN∥CD,可得∠FPN=∠PEA+∠FPE,進而可得∠PFC=∠PEA+∠FPE,即可求解;(3)令A(yù)B與PF交點為O,連接EF,根據(jù)三角形的內(nèi)角和定理可得∠GEF+∠GFE=∠PEA+∠PFC+∠OEF+∠OFE,由(2)得∠PEA=∠PFC-α,由∠OFE+∠OEF=180°-∠FOE=180°-∠PFC可求解.【詳解】解:(1)如圖1,過點P作PM∥AB,∴∠1=∠AEP.又∠AEP=40°,∴∠1=40°.∵AB∥CD,∴PM∥CD,∴∠2+∠PFD=180°.∵∠PFD=130°,∴∠2=180°-130°=50°.∴∠1+∠2=40°+50°=90°.即∠EPF=90°.(2)∠PFC=∠PEA+∠P.理由:過P點作PN∥AB,則PN∥CD,∴∠PEA=∠NPE,∵∠FPN=∠NPE+∠FPE,∴∠FPN=∠PEA+∠FPE,∵PN∥CD,∴∠FPN=∠PFC,∴∠PFC=∠PEA+∠FPE,即∠PFC=∠PEA+∠P;(3)令A(yù)B與PF交點為O,連接EF,如圖3.在△GFE中,∠G=180°-(∠GFE+∠GEF),∵∠GEF=∠PEA+∠OEF,∠GFE=∠PFC+∠OFE,∴∠GEF+∠GFE=∠PEA+∠PFC+∠OEF+∠OFE,∵由(2)知∠PFC=∠PEA+∠P,∴∠PEA=∠PFC-α,∵∠OFE+∠OEF=180°-∠FOE=180°-∠PFC,∴∠GEF+∠GFE=(∠PFC?α)+∠PFC+180°?∠PFC=180°?α,∴∠G=180°?(∠GEF+∠GFE)=180°?180°+α=α.【點睛】本題主要考查平行線的性質(zhì)與判定,靈活運用平行線的性質(zhì)與判定是解題的關(guān)鍵.5.(1)70°;(2),證明見解析;(3)122°【分析】(1)過作,根據(jù)平行線的性質(zhì)得到,,即可求得;(2)過過作,根據(jù)平行線的性質(zhì)得到,,即;(3)設(shè),則,通過三角形內(nèi)角和得到,由角平分線定義及得到,求出的值再通過三角形內(nèi)角和求.【詳解】解:(1)過作,,,,,,故答案為:;(2).理由如下:過作,,,,,,,;(3),設(shè),則,,,又,,,平分,,,,即,解得,,.【點睛】本題主要考查了平行線的性質(zhì)和判定,正確做出輔助線是解決問題的關(guān)鍵.6.(1)PB′⊥QC′;(2)當射線PB旋轉(zhuǎn)的時間為5秒或25秒或45秒時,PB′∥QC′【分析】(1)求出旋轉(zhuǎn)10秒時,∠BPB′和∠CQC′的度數(shù),設(shè)PB′與QC′交于O,過O作OE∥AB,根據(jù)平行線的性質(zhì)求得∠POE和∠QOE的度數(shù),進而得結(jié)論;(2)分三種情況:①當0<t≤15時,②當15<t≤30時,③當30<t<45時,根據(jù)平行線的性質(zhì),得出角的關(guān)系,列出t的方程便可求得旋轉(zhuǎn)時間.【詳解】解:(1)如圖1,當旋轉(zhuǎn)時間30秒時,由已知得∠BPB′=10°×12=120°,∠CQC′=3°×10=30°,過O作OE∥AB,∵AB∥CD,∴AB∥OE∥CD,∴∠POE=180°﹣∠BPB′=60°,∠QOE=∠CQC′=30°,∴∠POQ=90°,∴PB′⊥QC′,故答案為:PB′⊥QC′;(2)①當0<t≤15時,如圖,則∠BPB′=12t°,∠CQC′=45°+3t°,∵AB∥CD,PB′∥QC′,∴∠BPB′=∠PEC=∠CQC′,即12t=45+3t,解得,t=5;②當15<t≤30時,如圖,則∠APB′=12t﹣180°,∠CQC'=3t+45°,∵AB∥CD,PB′∥QC′,∴∠BPB′=∠BEQ=∠CQC′,即12t﹣180=45+3t,解得,t=25;③當30<t≤45時,如圖,則∠BPB′=12t﹣360°,∠CQC′=3t+45°,∵AB∥CD,PB′∥QC′,∴∠BPB′=∠BEQ=∠CQC′,即12t﹣360=45+3t,解得,t=45;綜上,當射線PB旋轉(zhuǎn)的時間為5秒或25秒或45秒時,PB′∥QC′.【點睛】本題主要考查了平行線的性質(zhì),第(1)題關(guān)鍵是作平行線,第(2)題關(guān)鍵是分情況討論,運用方程思想解決幾何問題.7.(1)1,4;(2)m=10;(3)不正確,改正見解析.【解析】試題分析:(1)根據(jù)新定義由61=6、34=81可得log66=1,log381=4;(2)根據(jù)定義知m﹣2=23,解之可得;(3)設(shè)ax=M,ay=N,則logaM=x、logaN=y,根據(jù)ax?ay=ax+y知ax+y=M?N,繼而得logaMN=x+y,據(jù)此即可得證.試題解析:解:(1)∵61=6,34=81,∴l(xiāng)og66=1,log381=4.故答案為:1,4;(2)∵log2(m﹣2)=3,∴m﹣2=23,解得:m=10;(3)不正確,設(shè)ax=M,ay=N,則logaM=x,logaN=y(a>0,a≠1,M、N均為正數(shù)).∵ax?ay=,∴=M?N,∴l(xiāng)ogaMN=x+y,即logaMN=logaM+logaN.點睛:本題考查了有理數(shù)和整式的混合運算,解題的關(guān)鍵是明確題意,可以利用新定義進行解答問題.8.(1)(437,307,177)是“蹦蹦數(shù)組”,(601,473,346)不是“蹦蹦數(shù)組”;(2)存在,數(shù)組為(532,395,258);(3)這個三位數(shù)是147.【分析】(1)由“蹦蹦數(shù)組”的定義進行驗證即可;(2)設(shè)s為,t為,則,先后求得n、s的值,根據(jù)“蹦蹦數(shù)組”的定義即可求解;(3)設(shè)這個數(shù)為,則,由和都是0到9的正整數(shù),列舉法即可得出這個三位數(shù).【詳解】解:(1)數(shù)組(437,307,177)中,437-307=130,307-177=130,∴437-307=307-177,故(437,307,177)是“蹦蹦數(shù)組”;數(shù)組(601,473,346)中,601-473=128,473-346=127,∴601-473473-346,故(601,473,346)不是“蹦蹦數(shù)組”;(2)設(shè)s為,t為,則,∵m、n為整數(shù),∴,則t為258,∴s為532,而,則b為532-137=395,驗算:532-395=395-258=137,故數(shù)組為(532,395,258);(3)根據(jù)題意,設(shè)這個數(shù)為,則,∴,而和都是0到9的正整數(shù),討論:p12345q13579111123135147159而是7的倍數(shù)的三位數(shù)只有147,且1-4=4-7=-3,數(shù)組(1,4,7)為“蹦蹦數(shù)組”,故這個三位數(shù)是147.【點睛】本題是一道新定義題目,解決的關(guān)鍵是能夠根據(jù)定義,通過列舉法找到合適的數(shù),進而求解.9.(1)210-1;(2);(3)9×210+1.【分析】(1)根據(jù)題目中材料可以得到用類比的方法得到1+2+22+23+…+29的值;(2)根據(jù)題目中材料可以得到用類比的方法得到1+5+52+53+54+…+5n的值.(3)根據(jù)題目中的信息,運用類比的數(shù)學(xué)思想可以解答本題.【詳解】解:(1)設(shè)S=1+2+22+23+…+29,將等式兩邊同時乘以2得:2S=2+22+23+24+…+29+210,將下式減去上式得2S-S=210-1,即S=210-1,即1+2+22+23+…+29=210-1.故答案為210-1;(2)設(shè)S=1+5+52+53+54+…+5n,將等式兩邊同時乘以5得:5S=5+52+53+54+55+…+5n+5n+1,將下式減去上式得5S-S=5n+1-1,即S=,即1+5+52+53+54+…+5n=;(3)設(shè)S=1+2×2+3×22+4×23+…+9×28+10×29,將等式兩邊同時乘以2得:2S=2+2×22+3×23+4×24+…+9×29+10×210,將上式減去下式得-S=1+2+22+23+…+29+10×210,-S=210-1-10×210,S=9×210+1,即1+2×2+3×22+4×23+…+9×28+10×29=9×210+1.【點睛】本題考查有理數(shù)的混合運算、數(shù)字的變化類,解題的關(guān)鍵是明確題意,發(fā)現(xiàn)數(shù)字的變化規(guī)律.10.(1)1;5;(2)①3.807,0.807;②;.【分析】(1)根據(jù)布谷數(shù)的定義把2和32化為底數(shù)為2的冪即可得出答案;(2)①根據(jù)布谷數(shù)的運算性質(zhì),g(14)=g(2×7)=g(2)+g(7),,再代入數(shù)值可得解;②根據(jù)布谷數(shù)的運算性質(zhì),先將兩式化為,,再代入求解.【詳解】解:(1)g(2)=g(21)=1,g(32)=g(25)=5;故答案為1,32;(2)①g(14)=g(2×7)=g(2)+g(7),∵g(7)=2.807,g(2)=1,∴g(14)=3.807;g(4)=g(22)=2,∴=g(7)-g(4)=2.807-2=0.807;故答案為3.807,0.807;②∵.∴;.【點睛】本題考查有理數(shù)的乘方運算,新定義;能夠?qū)⑿露x的運算轉(zhuǎn)化為有理數(shù)的乘方運算是解題的關(guān)鍵.11.(1)7;-7;(2)5;(3)13-.【分析】(1)估算出的范圍,即可得出答案;(2)分別確定出a、b的值,代入原式計算即可求出值;(3)根據(jù)題意確定出等式左邊的整數(shù)部分得出y的值,進而求出y的值,即可求出所求.【詳解】解:(1)∵7﹤﹤8,∴的整數(shù)部分是7,小數(shù)部分是-7.故答案為:7;-7.(2)∵3﹤﹤4,∴,∵2﹤﹤3,∴b=2∴|a-b|+=|-3-2|+=5-+=5(3)∵2﹤﹤3∴11<9+<12,∵9+=x+y,其中x是整數(shù),且0﹤y<1,∴x=11,y=-11+9+=-2,∴x-y=11-(-2)=13-【點睛】本題考查的是無理數(shù)的小數(shù)部分和整數(shù)部分及其運算.估算無理數(shù)的整數(shù)部分是解題關(guān)鍵.12.(1)1,4;(2)m=10;(3)不正確,改正見解析.【解析】試題分析:(1)根據(jù)新定義由61=6、34=81可得log66=1,log381=4;(2)根據(jù)定義知m﹣2=23,解之可得;(3)設(shè)ax=M,ay=N,則logaM=x、logaN=y,根據(jù)ax?ay=ax+y知ax+y=M?N,繼而得logaMN=x+y,據(jù)此即可得證.試題解析:解:(1)∵61=6,34=81,∴l(xiāng)og66=1,log381=4.故答案為:1,4;(2)∵log2(m﹣2)=3,∴m﹣2=23,解得:m=10;(3)不正確,設(shè)ax=M,ay=N,則logaM=x,logaN=y(a>0,a≠1,M、N均為正數(shù)).∵ax?ay=,∴=M?N,∴l(xiāng)ogaMN=x+y,即logaMN=logaM+logaN.點睛:本題考查了有理數(shù)和整式的混合運算,解題的關(guān)鍵是明確題意,可以利用新定義進行解答問題.13.(1)(8,12),(0,10);(2)2秒或14秒;(3)存在,t=2.5s或【分析】(1)由非負數(shù)的性質(zhì)可得a、b的值,據(jù)此可得點B的坐標;由點P運動速度和時間可得其運動5秒的路程,得到OP=10,從而得出其坐標;(2)先根據(jù)點P運動11秒判斷出點P的位置,再根據(jù)三角形的面積公式求解可得;(3)分為點P在OC、BC上分類計算即可.【詳解】解:(1)∵a,b滿足,∴a=8,b=12,∴點B(8,12);當點P移動5秒時,其運動路程為5×2=10,∴OP=10,則點P坐標為(0,10),故答案為:(8,12)、(0,10);(2)由題意可得,第一種情況,當點P在OC上時,點P移動的時間是:4÷2=2秒,第二種情況,當點P在BA上時.點P移動的時間是:(12+8+8)÷2=14秒,所以在移動過程中,當點P到x軸的距離為4個單位長度時,點P移動的時間是2秒或14秒.(3)如圖1所示:∵△OBP的面積=20,∴OP?BC=20,即×8×OP=20.解得:OP=5.∴此時t=2.5s如圖2所示;∵△OBP的面積=20,∴PB?OC=20,即×12×PB=20.解得:BP=.∴CP=.∴此時t=,綜上所述,滿足條件的時間t=2.5s或【點睛】本題考查矩形的性質(zhì),三角形的面積,坐標與圖形的性質(zhì),解題的關(guān)鍵是明確題意,找出所求問題需要的條件,利用數(shù)形結(jié)合的思想解答問題.14.(1)見解析;(2),理由見解析;(3)①當在延長線時(點不與點重合),;②當在之間時(點不與點,重合),.理由見解析【分析】(1)過P作PE∥AB,構(gòu)造同旁內(nèi)角,利用平行線性質(zhì),可得∠APC=113°;(2)過過作交于,,推出,根據(jù)平行線的性質(zhì)得出,即可得出答案;(3)畫出圖形(分兩種情況:①點P在BA的延長線上,②當在之間時(點不與點,重合)),根據(jù)平行線的性質(zhì)即可得出答案.【詳解】解:(1)過作,,,,,,,,;(2),理由如下:如圖3,過作交于,,,,,,,又;(3)①當在延長線時(點不與點重合),;理由:如圖4,過作交于,,,,,,,,又,;②當在之間時(點不與點,重合),.理由:如圖5,過作交于,,,,,,,,又.【點睛】本題考查了平行線的性質(zhì)的應(yīng)用,主要考查學(xué)生的推理能力,解決問題的關(guān)鍵是作輔助線構(gòu)造內(nèi)錯角以及同旁內(nèi)角.15.-3-46【解析】分析:(1)求出CD的長度,再根據(jù)三角形的面積公式列式計算即可得解;(2)根據(jù)等角的余角相等解答即可;(3)首先證明∠ACD=∠ACE,推出∠DCE=2∠ACD,再證明∠ACD=∠BCO,∠BEC=∠DCE=2∠ACD即可解決問題;詳解:(1)解:如圖1中,∵|a+3|+(b-a+1)2=0,∴a=-3,b=4,∵點C(0,-3),D(-4,-3),∴CD=4,且CD∥x軸,∴△BCD的面積=1212×4×3=6;故答案為-3,-4,6.(2)證明:如圖2中,∵∠CPQ=∠CQP=∠OPB,AC⊥BC,∴∠CBQ+∠CQP=90°,又∵∠ABQ+∠CPQ=90°,∴∠ABQ=∠CBQ,∴BQ平分∠CBA.(3)解:如圖3中,結(jié)論:=定值=2.理由:∵AC⊥BC,∴∠ACB=90°,∴∠ACD+∠BCF=90°,∵CB平分∠ECF,∴∠ECB=∠BCF,∴∠ACD+∠ECB=90°,∵∠ACE+∠ECB=90°,∴∠ACD=∠ACE,∴∠DCE=2∠ACD,∵∠ACD+∠ACO=90°,∠BCO+∠ACO=90°,∴∠ACD=∠BCO,∵C(0,-3),D(-4,-3),∴CD∥AB,∠BEC=∠DCE=2∠ACD,∴∠BEC=2∠BCO,∴=2.點睛:本題考查了坐標與圖形性質(zhì),三角形的角平分線,三角形的面積,三角形的內(nèi)角和定理,三角形的外角性質(zhì)等知識,熟記性質(zhì)并準確識圖是解題的關(guān)鍵.16.(1)A、B兩種型號電風扇的銷售單價分別為250元、210元;(2)超市最多采購A種型號電風扇10臺時,采購金額不多于5400元;(3)超市不能實現(xiàn)利潤1400元的目標;【分析】(1)根據(jù)第一周和第二周的銷售量和銷售收入,可列寫2個等式方程,再求解二元一次方程組即可;(2)利用不多于5400元這個量,列寫不等式,得到A型電風扇a臺的一個取值范圍,從而得出a的最大值;(3)將B型電風扇用(30-a)表示出來,列寫A、B兩型電風扇利潤為1400的等式方程,可求得a的值,最后在判斷求解的值是否滿足(2)中a的取值范圍即可【詳解】解:(1)設(shè)A、B兩種型號電風扇的銷售單價分別為x元、y元,依題意得:,解得:,答:A、B兩種型號電風扇的銷售單價分別為250元、210元.(2)設(shè)采購A種型號電風扇a臺,則采購B種型號電風扇(30-a)臺.依題意得:200a+170(30-a)≤5400,解得:a≤10.答:超市最多采購A種型號電風扇10臺時,采購金額不多于5400元;(3)依題意有:(250-200)a+(210-170)(30-a)=1400,解得:a=20,∵a≤10,∴在(2)的條件下超市不能實現(xiàn)利潤1400元的目標.【點睛】本題是二元一次方程和一元一次不等式應(yīng)用題的綜合考查,解題關(guān)鍵是依據(jù)題意,找出等量關(guān)系式(不等關(guān)系式),然后按照題目要求相應(yīng)求解17.【應(yīng)用】:(1)3;(2)(1,2)或(1,﹣2);【拓展】:(1)=5;(2)2或﹣2;(3)4或8.【分析】(應(yīng)用)(1)根據(jù)若y1=y(tǒng)2,則AB∥x軸,且線段AB的長度為|x1?x2|,代入數(shù)據(jù)即可得出結(jié)論;(2)由CD∥y軸,可設(shè)點D的坐標為(1,m),根據(jù)CD=2,可得|0﹣m|=2,故可求出m,即可求解;(拓展)(1)根據(jù)兩點之間的折線距離公式,代入數(shù)據(jù)即可得出結(jié)論;(2)根據(jù)兩點之間的折線距離公式結(jié)合d(E,H)=3,即可得出關(guān)于t的含絕對值符號的一元一次方程,解之即可得出結(jié)論;(3)由點Q在x軸上,可設(shè)點Q的坐標為(x,0),根據(jù)三角形的面積公式結(jié)合三角形OPQ的面積為3即可求出x的值,再利用兩點之間的折線距離公式即可得出結(jié)論;【詳解】(應(yīng)用):(1)AB的長度為|﹣1﹣2|=3.故答案為:3.(2)由CD∥y軸,可設(shè)點D的坐標為(1,m),∵CD=2,∴|0﹣m|=2,解得:m=±2,∴點D的坐標為(1,2)或(1,﹣2).故答案為:(1,2)或(1,﹣2).(拓展):(1)d(E,F(xiàn))=|2﹣(﹣1)|+|0﹣(﹣2)|=5.故答案為:=5.(2)∵E(2,0),H(1,t),d(E,H)=3,∴|2﹣1|+|0﹣t|=3,解得:t=±2.故答案為:2或﹣2.(3)由點Q在x軸上,可設(shè)點Q的坐標為(x,0),∵三角形OPQ的面積為3,∴|x|×3=3,解得:x=±2.當點Q的坐標為(2,0)時,d(P,Q)=|3﹣2|+|3﹣0|=4;當點Q的坐標為(﹣2,0)時,d(P,Q)=|3﹣(﹣2)|+|3﹣0|=8.故答案為:4或8.【點睛】本題是三角形綜合題目,考查了新定義、兩點間的距離公式、三角形面積等知識,讀懂題意并熟練運用兩點間的距離及兩點之間的折線距離公式是解題的關(guān)鍵.18.(1)1或3;(2)∠APD=∠CDP+∠PAB或∠APD=∠PAB-∠CDP,理由見解析【分析】(1)由非負數(shù)的性質(zhì)求出a,b,得到AB的長,結(jié)合點C坐標求出平行四邊形ABCD的面積,再根據(jù)的面積等于平行四邊形面積的,列出方程,解之即可;(2)分點P在線段OC上和點P在OC的延長線上,兩種情況,過P作PQ∥AB,利用平行線的性質(zhì)求解.【詳解】解:(1)∵,∴a=-4,b=3,即A(-4,0),B(3,0),∴AB=3-(-4)=7,又C(0,4),∴OC=4,∴平行四邊形ABCD的面積=4×7=28,由題意可知:PC=2t,則OP=,∵的面積等于平行四邊形面積的,∴,解得:t=1或t=3,(2)如圖,當點P在線段OC上時,過P作PQ∥AB,則PQ∥CD,∴∠CDP=∠DPQ,∠APQ=∠PAB,∴∠APD=∠DPQ+∠APQ=∠CDP+∠PAB;當點P在OC的延長線上時,過P作PQ∥AB,則PQ∥CD,∴∠CDP=∠DPQ,∠APQ=∠PAB,∴∠APD=∠APQ-∠DPQ=∠PAB-∠CDP.【點睛】本題考查了坐標與圖形,平行線的性質(zhì),解題的關(guān)鍵是掌握坐標和圖形的關(guān)系,將坐標與線段長進行轉(zhuǎn)化,同時適當添加輔助線,構(gòu)造平行線.19.(1)①20070618;②見解析;(2)16080413【分析】(1)根據(jù)題意,分別求出A1,A2,A3,A4,A5,即可得到答案;(2)根據(jù)題意,分別求出A1,A2,A3,A4,A5,即可得到答案;(3)由圖4知,A1=16+8=24,由加密規(guī)則得24-8=16,A2=4+2=6,A3=8+1=9,由此得到李思在8年級4班,再求出A4,A5,即可得到答案.【詳解】解:(1)①在圖1中,A1=16×1+8×0+4×1+2×0+0=20,A2=16×0+8×0+4×1+2×1+1=7,A3=16×0+8×0+4×1+2×1+0=6,A4=1,A5=16×0+8×1+4×0+2×0+0=8,故答案為:20070618;②如圖所示.2018年入學(xué)的9年級5班的39號,其中:A1=18=16+0+0+1+1,A2=09=8+1A3=05=4+1,A4=3,A5=9=8+1.(2)設(shè)李思同學(xué)在x年級y班.由圖4知,A1=16+8=24,由加密規(guī)則得24-8=16,因此,李思是2016年入學(xué)的.A2=4+2=6,A3=8+1=9.由加密規(guī)則,得:,解得x=8,y=4,所以,李思在8年級4班.A4=2+1=3,A5=2+1=3,33-2=31,根據(jù)加密規(guī)則,原編號的末兩位數(shù)為13.綜上,李思同學(xué)的編號是16080413.【點睛】本題主要考查了實數(shù)與圖形,解二元一次方程組,截圖的關(guān)鍵在于能夠準確讀懂題意.20.(1)白紙有100噸,作業(yè)本有90噸;(2)69520元【分析】(1)設(shè)白紙有噸,作業(yè)本有噸,根據(jù)共支出公路運費4200元,鐵路運費26280元.列出二元一次方程組,解之即可;(2)由銷售款(白紙的購進款與運輸費的和),進行計算即可.【詳解】解:(1)設(shè)白紙有噸,作業(yè)本有噸,由題意,得,整理得:,解得.答:白紙有100噸,作業(yè)本有90噸;(2)(元).答:這批作業(yè)本的銷售款比白紙的購進款與運輸費的和多69520元.【點睛】本題考查了二元一次方程組的應(yīng)用,解題的關(guān)鍵是找準等量關(guān)系,正確列出二元一次方程組.21.【分析】用加減消元法解二元一次方程組,在兩個方程作差時符號出錯了,正確為①②,得,再求解即可.【詳解】解:上述解法不正確.正確解題過程如下:①②,得,解得,把代入方程①,得,解得.原方程組的解為.【點睛】本題考查了二元一次方程組的解,解題的關(guān)鍵是熟練掌握加減消元法解二元一次方程組.22.(1);0≤x≤6時,y=1.5x;x>6時,y=6x-27;(2)該戶5月份水費是21元.【分析】(1)根據(jù)3、4兩個月的用水量和相應(yīng)水費列方程組求解可得a、c的值;當0≤x≤6時,水費=用水量×此時單價;當x>6時,水費=前6立方水費+超出部分水費,據(jù)此列式即可;(2)x=8代入x>6時y與x的函數(shù)關(guān)系式求解即可.【詳解】解:(1)根據(jù)題意,得:,解得:;當0≤x≤6時,y=1.5x;當x>6時,y=1.5×6+6(x-6)=6x-27;(2)當x=8時,y=6x-27=6×8-27=21.答:若某戶5月份的用水量為8米3,該戶5月份水費是21元.【點睛】本題主要考查利用一次函數(shù)的模型解決實際問題的能力.要先根據(jù)題意列出函數(shù)關(guān)系式,再代數(shù)求值.解題的關(guān)鍵是要分析題意根據(jù)實際意義準確的列出解析式,再把對應(yīng)值代入求解.23.(1)7441不是“誠勤數(shù)”;5463是“誠勤數(shù)”;(2)滿足條件的A為:2314或5005或3250.【分析】(1)直接利用定義進行驗證,即可得到答案;(2)由題意,設(shè)這個四位數(shù)的十位數(shù)是a,千位數(shù)是b,則個位數(shù)為(5a),百位數(shù)為(5b),然后根據(jù)13的倍數(shù)關(guān)系,以及“5類誠勤數(shù)”的定義,利用分類討論的進行分析,即可得到答案.【詳解】解:(1)在7441中,7+4=11,4+1=5,∵115,∴7441不是“誠勤數(shù)”;在5436中,∵5+4=6+3=9,∴5463是“誠勤數(shù)”;(2)根據(jù)題意,設(shè)這個四位數(shù)的十位數(shù)是a,千位數(shù)是b,則個位數(shù)為(5a),百位數(shù)為(5b),且,,∴這個四位數(shù)為:,∵,,∴,∵這個四位數(shù)是13的倍數(shù),∴必須是13的倍數(shù);∵,,∴在時,取到最大值60,∴可以為:2、15、28、41、54,∵,則是3的倍數(shù),∴或,∴或;①當時,,∵,且a為非負整數(shù),∴或,∴或,若,則,此時;若,則,此時;②當時,,∵,且a為非負整數(shù),∴是3的倍數(shù),且,∴,∴,則,∴;綜合上述,滿足條件的A為:2314或5005或3250.【點睛】本題考查了二元一次方程,新定義的運算法則,解題的關(guān)鍵是熟練掌握題意,正確列出二元一次方程,結(jié)合新定義,利用分類討論的思想進行解題.24.(1)15;(2)①七年級(1)班有24人得滿分;②七年級(2)班的總分高.【分析】(1)分別對連正確的數(shù)量進行分析,即可得到答案;(2)①設(shè)七年(1)班滿分人數(shù)有x人,則未滿分的有人,然后列出方程,解方程即可得到答案;②根據(jù)題意,先求出兩個班各分數(shù)段的人數(shù),然后求出各班的總分,即可進行比較.【詳解】解:(1)根據(jù)題意,連對0個得分為0分;連對一個得分為5分;連對兩個得分為10分;連對四個得分為20分;不存在連對三個的情況,則得15分是不可能的;故答案為:15.(2)①根據(jù)題意,設(shè)七年(1)班滿分人數(shù)有x人,則未滿分的有人,則,解得:,∴(1)班有24人得滿分;②根據(jù)題意,(1)班中除0分外,最低得分人數(shù)與其他未滿分人數(shù)相等,∴(1)班得5分和10分的人數(shù)相等,人數(shù)為:(人);∴(1)班得總分為:(分);由題意,(2)班存在得5分、得10分、得20分,三種情況,設(shè)得5分的有y人,得10分的有z人,滿分20分的有人,∴,∴,∴七(2)班得總分為:(分);∵,∴七(2)班的總分高.【點睛】本題考查了二元一次方程的應(yīng)用,一元一次方程的應(yīng)用,解題的關(guān)鍵是熟練掌握題意,正確掌握題目的等量關(guān)系,列出方程進行解題.25.(1)-1;(2)t=-2,-1,0,1;(3)13組【分析】(1)把x=2代入方程3x-5y=11得,求得y的值,即可求得θ的值;(2)參考小明的解題方法求解即可;(3)參考小明的解題方法求解后,即可得到結(jié)論.【詳解】解:(1)把x=2代入方

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論