2024屆福建師范大第二附屬中學(xué)中考數(shù)學(xué)押題試卷含解析_第1頁
2024屆福建師范大第二附屬中學(xué)中考數(shù)學(xué)押題試卷含解析_第2頁
2024屆福建師范大第二附屬中學(xué)中考數(shù)學(xué)押題試卷含解析_第3頁
2024屆福建師范大第二附屬中學(xué)中考數(shù)學(xué)押題試卷含解析_第4頁
2024屆福建師范大第二附屬中學(xué)中考數(shù)學(xué)押題試卷含解析_第5頁
已閱讀5頁,還剩17頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2024屆福建師范大第二附屬中學(xué)中考數(shù)學(xué)押題試卷注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,A,C,E,G四點在同一直線上,分別以線段AC,CE,EG為邊在AG同側(cè)作等邊三角形△ABC,△CDE,△EFG,連接AF,分別交BC,DC,DE于點H,I,J,若AC=1,CE=2,EG=3,則△DIJ的面積是()A. B. C. D.2.如圖圖形中,既是軸對稱圖形,又是中心對稱圖形的是()A. B. C. D.3.若正六邊形的半徑長為4,則它的邊長等于()A.4 B.2 C. D.4.如果一次函數(shù)y=kx+b(k、b是常數(shù),k≠0)的圖象經(jīng)過第一、二、四象限,那么k、b應(yīng)滿足的條件是()A.k>0,且b>0 B.k<0,且b>0 C.k>0,且b<0 D.k<0,且b<05.下列圖形中,既是中心對稱圖形又是軸對稱圖形的是()A. B. C. D.6.下列計算正確的是()A.=±3 B.﹣32=9 C.(﹣3)﹣2= D.﹣3+|﹣3|=﹣67.已知關(guān)于的方程,下列說法正確的是A.當時,方程無解B.當時,方程有一個實數(shù)解C.當時,方程有兩個相等的實數(shù)解D.當時,方程總有兩個不相等的實數(shù)解8.下列圖形中一定是相似形的是()A.兩個菱形 B.兩個等邊三角形 C.兩個矩形 D.兩個直角三角形9.(2016福建省莆田市)如圖,OP是∠AOB的平分線,點C,D分別在角的兩邊OA,OB上,添加下列條件,不能判定△POC≌△POD的選項是()A.PC⊥OA,PD⊥OB B.OC=OD C.∠OPC=∠OPD D.PC=PD10.從,0,π,,6這5個數(shù)中隨機抽取一個數(shù),抽到有理數(shù)的概率是()A. B. C. D.11.如圖,△ABC是⊙O的內(nèi)接三角形,AD⊥BC于D點,且AC=5,CD=3,BD=4,則⊙O的直徑等于()A.52 B.32 C.512.如圖分別是某班全體學(xué)生上學(xué)時乘車、步行、騎車人數(shù)的分布直方圖和扇形統(tǒng)計圖(兩圖都不完整),下列結(jié)論錯誤的是()A.該班總?cè)藬?shù)為50 B.步行人數(shù)為30C.乘車人數(shù)是騎車人數(shù)的2.5倍 D.騎車人數(shù)占20%二、填空題:(本大題共6個小題,每小題4分,共24分.)13.化簡:=_____.14.方程3x2﹣5x+2=0的一個根是a,則6a2﹣10a+2=_____.15.圓錐底面圓的半徑為3,高為4,它的側(cè)面積等于_____(結(jié)果保留π).16.已知a、b是方程x2﹣2x﹣1=0的兩個根,則a2﹣a+b的值是_______.17.如圖,AB是半圓O的直徑,點C、D是半圓O的三等分點,若弦CD=2,則圖中陰影部分的面積為.18.計算﹣的結(jié)果為_____.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)在如圖的正方形網(wǎng)格中,每一個小正方形的邊長為1;格點三角形ABC(頂點是網(wǎng)格線交點的三角形)的頂點A、C的坐標分別是(-4,6)、(-1,4);請在圖中的網(wǎng)格平面內(nèi)建立平面直角坐標系;請畫出△ABC關(guān)于x軸對稱的△A1B1C1;請在y軸上求作一點P,使△PB1C的周長最小,并直接寫出點P的坐標.20.(6分)如圖,一次函數(shù)y=kx+b的圖象與二次函數(shù)y=﹣x2+c的圖象相交于A(﹣1,2),B(2,n)兩點.(1)求一次函數(shù)和二次函數(shù)的解析式;(2)根據(jù)圖象直接寫出使二次函數(shù)的值大于一次函數(shù)的值的x的取值范圍;(3)設(shè)二次函數(shù)y=﹣x2+c的圖象與y軸相交于點C,連接AC,BC,求△ABC的面積.21.(6分)將一個等邊三角形紙片AOB放置在平面直角坐標系中,點O(0,0),點B(6,0).點C、D分別在OB、AB邊上,DC∥OA,CB=2.(I)如圖①,將△DCB沿射線CB方向平移,得到△D′C′B′.當點C平移到OB的中點時,求點D′的坐標;(II)如圖②,若邊D′C′與AB的交點為M,邊D′B′與∠ABB′的角平分線交于點N,當BB′多大時,四邊形MBND′為菱形?并說明理由.(III)若將△DCB繞點B順時針旋轉(zhuǎn),得到△D′C′B,連接AD′,邊D′C′的中點為P,連接AP,當AP最大時,求點P的坐標及AD′的值.(直接寫出結(jié)果即可).22.(8分)計算:.23.(8分)為了提高服務(wù)質(zhì)量,某賓館決定對甲、乙兩種套房進行星級提升,已知甲種套房提升費用比乙種套房提升費用少3萬元,如果提升相同數(shù)量的套房,甲種套房費用為625萬元,乙種套房費用為700萬元.(1)甲、乙兩種套房每套提升費用各多少萬元?(2)如果需要甲、乙兩種套房共80套,市政府籌資金不少于2090萬元,但不超過2096萬元,且所籌資金全部用于甲、乙種套房星級提升,市政府對兩種套房的提升有幾種方案?哪一種方案的提升費用最少?24.(10分)為了解朝陽社區(qū)歲居民最喜歡的支付方式,某興趣小組對社區(qū)內(nèi)該年齡段的部分居民展開了隨機問卷調(diào)查(每人只能選擇其中一項),并將調(diào)查數(shù)據(jù)整理后繪成如下兩幅不完整的統(tǒng)計圖.請根據(jù)圖中信息解答下列問題:求參與問卷調(diào)查的總?cè)藬?shù).補全條形統(tǒng)計圖.該社區(qū)中歲的居民約8000人,估算這些人中最喜歡微信支付方式的人數(shù).25.(10分)如圖,是5×5正方形網(wǎng)格,每個小正方形的邊長為1,請按要求畫出下列圖形,所畫圖形的各個頂點均在所給小正方形的頂點上.(1)在圖(1)中畫出一個等腰△ABE,使其面積為3.5;(2)在圖(2)中畫出一個直角△CDF,使其面積為5,并直接寫出DF的長.26.(12分)如圖,點在的直徑的延長線上,點在上,且AC=CD,∠ACD=120°.求證:是的切線;若的半徑為2,求圖中陰影部分的面積.27.(12分)為了弘揚我國古代數(shù)學(xué)發(fā)展的偉大成就,某校九年級進行了一次數(shù)學(xué)知識競賽,并設(shè)立了以我國古代數(shù)學(xué)家名字命名的四個獎項:“祖沖之獎”、“劉徽獎”、“趙爽獎”和“楊輝獎”,根據(jù)獲獎情況繪制成如圖1和圖2所示的條形統(tǒng)計圖和扇形統(tǒng)計圖,并得到了獲“祖沖之獎”的學(xué)生成績統(tǒng)計表:“祖沖之獎”的學(xué)生成績統(tǒng)計表:分數(shù)/分80859095人數(shù)/人42104根據(jù)圖表中的信息,解答下列問題:(1)這次獲得“劉徽獎”的人數(shù)是_____,并將條形統(tǒng)計圖補充完整;(2)獲得“祖沖之獎”的學(xué)生成績的中位數(shù)是_____分,眾數(shù)是_____分;(3)在這次數(shù)學(xué)知識竟賽中有這樣一道題:一個不透明的盒子里有完全相同的三個小球,球上分別標有數(shù)字“﹣2”,“﹣1”和“2”,隨機摸出一個小球,把小球上的數(shù)字記為x放回后再隨機摸出一個小球,把小球上的數(shù)字記為y,把x作為橫坐標,把y作為縱坐標,記作點(x,y).用列表法或樹狀圖法求這個點在第二象限的概率.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解題分析】

根據(jù)等邊三角形的性質(zhì)得到FG=EG=3,∠AGF=∠FEG=60°,根據(jù)三角形的內(nèi)角和得到∠AFG=90°,根據(jù)相似三角形的性質(zhì)得到==,==,根據(jù)三角形的面積公式即可得到結(jié)論.【題目詳解】∵AC=1,CE=2,EG=3,∴AG=6,∵△EFG是等邊三角形,∴FG=EG=3,∠AGF=∠FEG=60°,∵AE=EF=3,∴∠FAG=∠AFE=30°,∴∠AFG=90°,∵△CDE是等邊三角形,∴∠DEC=60°,∴∠AJE=90°,JE∥FG,∴△AJE∽△AFG,∴==,∴EJ=,∵∠BCA=∠DCE=∠FEG=60°,∴∠BCD=∠DEF=60°,∴∠ACI=∠AEF=120°,∵∠IAC=∠FAE,∴△ACI∽△AEF,∴==,∴CI=1,DI=1,DJ=,∴IJ=,∴=?DI?IJ=××.故選:A.【題目點撥】本題考查了等邊三角形的性質(zhì),相似三角形的判定和性質(zhì),三角形的面積的計算,熟練掌握相似三角形的性質(zhì)和判定是解題的關(guān)鍵.2、B【解題分析】

根據(jù)軸對稱圖形與中心對稱圖形的概念求解.【題目詳解】解:A、是軸對稱圖形,不是中心對稱圖形,故A不正確;B、既是軸對稱圖形,又是中心對稱圖形,故B正確;C、是軸對稱圖形,不是中心對稱圖形,故C不正確;D、既不是軸對稱圖形,也不是中心對稱圖形,故D不正確.故選B.【題目點撥】本題考查了軸對稱圖形和中心對稱圖形的概念,以及對軸對稱圖形和中心對稱圖形的認識.3、A【解題分析】試題分析:正六邊形的中心角為360°÷6=60°,那么外接圓的半徑和正六邊形的邊長將組成一個等邊三角形,故正六邊形的半徑等于1,則正六邊形的邊長是1.故選A.考點:正多邊形和圓.4、B【解題分析】試題分析:∵一次函數(shù)y=kx+b(k、b是常數(shù),k≠0)的圖象經(jīng)過第一、二、四象限,∴k<0,b>0,故選B.考點:一次函數(shù)的性質(zhì)和圖象5、C【解題分析】試題解析:A.是軸對稱圖形,不是中心對稱圖形,故本選項錯誤;B.是軸對稱圖形,不是中心對稱圖形,故本選項錯誤;C.既是中心對稱圖又是軸對稱圖形,故本選項正確;D.是軸對稱圖形,不是中心對稱圖形,故本選項錯誤.故選C.6、C【解題分析】

分別根據(jù)二次根式的定義,乘方的意義,負指數(shù)冪的意義以及絕對值的定義解答即可.【題目詳解】=3,故選項A不合題意;﹣32=﹣9,故選項B不合題意;(﹣3)﹣2=,故選項C符合題意;﹣3+|﹣3|=﹣3+3=0,故選項D不合題意.故選C.【題目點撥】本題主要考查了二次根式的定義,乘方的定義、負指數(shù)冪的意義以及絕對值的定義,熟記定義是解答本題的關(guān)鍵.7、C【解題分析】當時,方程為一元一次方程有唯一解.當時,方程為一元二次方程,的情況由根的判別式確定:∵,∴當時,方程有兩個相等的實數(shù)解,當且時,方程有兩個不相等的實數(shù)解.綜上所述,說法C正確.故選C.8、B【解題分析】

如果兩個多邊形的對應(yīng)角相等,對應(yīng)邊的比相等,則這兩個多邊形是相似多邊形.【題目詳解】解:∵等邊三角形的對應(yīng)角相等,對應(yīng)邊的比相等,∴兩個等邊三角形一定是相似形,又∵直角三角形,菱形的對應(yīng)角不一定相等,矩形的邊不一定對應(yīng)成比例,∴兩個直角三角形、兩個菱形、兩個矩形都不一定是相似形,故選:B.【題目點撥】本題考查了相似多邊形的識別.判定兩個圖形相似的依據(jù)是:對應(yīng)邊成比例,對應(yīng)角相等,兩個條件必須同時具備.9、D【解題分析】試題分析:對于A,由PC⊥OA,PD⊥OB得出∠PCO=∠PDO=90°,根據(jù)AAS判定定理可以判定△POC≌△POD;對于BOC=OD,根據(jù)SAS判定定理可以判定△POC≌△POD;對于C,∠OPC=∠OPD,根據(jù)ASA判定定理可以判定△POC≌△POD;,對于D,PC=PD,無法判定△POC≌△POD,故選D.考點:角平分線的性質(zhì);全等三角形的判定.10、C【解題分析】

根據(jù)有理數(shù)的定義可找出在從,0,π,,6這5個數(shù)中只有0、、6為有理數(shù),再根據(jù)概率公式即可求出抽到有理數(shù)的概率.【題目詳解】∵在,0,π,,6這5個數(shù)中有理數(shù)只有0、、6這3個數(shù),∴抽到有理數(shù)的概率是,故選C.【題目點撥】本題考查了概率公式以及有理數(shù),根據(jù)有理數(shù)的定義找出五個數(shù)中的有理數(shù)的個數(shù)是解題的關(guān)鍵.11、A【解題分析】

連接AO并延長到E,連接BE.設(shè)AE=2R,則∠ABE=90°,∠AEB=∠ACB,∠ADC=90°,利用勾股定理求得AD=AC2-DC2=52-【題目詳解】解:如圖,連接AO并延長到E,連接BE.設(shè)AE=2R,則∠ABE=90°,∠AEB=∠ACB;∵AD⊥BC于D點,AC=5,DC=3,∴∠ADC=90°,∴AD=AC∴AB=在Rt△ABE與Rt△ADC中,∠ABE=∠ADC=90°,∠AEB=∠ACB,∴Rt△ABE∽Rt△ADC,∴ABAD即2R=AB?ACAD=4∴⊙O的直徑等于52故答案選:A.【題目點撥】本題主要考查了圓周角定理、勾股定理,解題的關(guān)鍵是掌握輔助線的作法.12、B【解題分析】

根據(jù)乘車人數(shù)是25人,而乘車人數(shù)所占的比例是50%,即可求得總?cè)藬?shù),然后根據(jù)百分比的含義即可求得步行的人數(shù),以及騎車人數(shù)所占的比例.【題目詳解】A、總?cè)藬?shù)是:25÷50%=50(人),故A正確;B、步行的人數(shù)是:50×30%=15(人),故B錯誤;C、乘車人數(shù)是騎車人數(shù)倍數(shù)是:50%÷20%=2.5,故C正確;D、騎車人數(shù)所占的比例是:1-50%-30%=20%,故D正確.由于該題選擇錯誤的,故選B.【題目點撥】本題考查讀頻數(shù)分布直方圖的能力和利用統(tǒng)計圖獲取信息的能力;利用統(tǒng)計圖獲取信息時,必須認真觀察、分析、研究統(tǒng)計圖,才能作出正確的判斷和解決問題.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解題分析】

先算除法,再算減法,注意把分式的分子分母分解因式【題目詳解】原式===【題目點撥】此題考查分式的混合運算,掌握運算法則是解題關(guān)鍵14、-1【解題分析】

根據(jù)一元二次方程的解的定義,將x=a代入方程3x1-5x+1=0,列出關(guān)于a的一元二次方程,通過變形求得3a1-5a的值后,將其整體代入所求的代數(shù)式并求值即可.【題目詳解】解:∵方程3x1-5x+1=0的一個根是a,∴3a1-5a+1=0,∴3a1-5a=-1,∴6a1-10a+1=1(3a1-5a)+1=-1×1+1=-1.故答案是:-1.【題目點撥】此題主要考查了方程解的定義.此類題型的特點是,利用方程解的定義找到相等關(guān)系,再把所求的代數(shù)式化簡后整理出所找到的相等關(guān)系的形式,再把此相等關(guān)系整體代入所求代數(shù)式,即可求出代數(shù)式的值.15、15π【解題分析】

根據(jù)圓的面積公式、扇形的面積公式計算即可.【題目詳解】圓錐的母線長==5,,圓錐底面圓的面積=9π圓錐底面圓的周長=2×π×3=6π,即扇形的弧長為6π,∴圓錐的側(cè)面展開圖的面積=×6π×5=15π,【題目點撥】本題考查的是扇形的面積,熟練掌握扇形和圓的面積公式是解題的關(guān)鍵.16、1【解題分析】

根據(jù)一元二次方程的解及根與系數(shù)的關(guān)系,可得出a2-2a=1、a+b=2,將其代入a2-a+b中即可求出結(jié)論.【題目詳解】∵a、b是方程x2-2x-1=0的兩個根,∴a2-2a=1,a+b=2,∴a2-a+b=a2-2a+(a+b)=1+2=1.故答案為1.【題目點撥】本題考查根與系數(shù)的關(guān)系以及一元二次方程的解,牢記兩根之和等于-、兩根之積等于是解題的關(guān)鍵.17、.【解題分析】試題分析:連結(jié)OC、OD,因為C、D是半圓O的三等分點,所以,∠BOD=∠COD=60°,所以,三角形OCD為等邊三角形,所以,半圓O的半徑為OC=CD=2,S扇形OBDC=,S△OBC==,S弓形CD=S扇形ODC-S△ODC==,所以陰影部分的面積為為S=--()=.考點:扇形的面積計算.18、.【解題分析】

根據(jù)同分母分式加減運算法則化簡即可.【題目詳解】原式=,故答案為.【題目點撥】本題考查了分式的加減運算,熟記運算法則是解題的關(guān)鍵.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)(2)見解析;(3)P(0,2).【解題分析】分析:(1)根據(jù)A,C兩點的坐標即可建立平面直角坐標系.(2)分別作各點關(guān)于x軸的對稱點,依次連接即可.(3)作點C關(guān)于y軸的對稱點C′,連接B1C′交y軸于點P,即為所求.詳解:(1)(2)如圖所示:(3)作點C關(guān)于y軸的對稱點C′,連接B1C′交y軸于點P,則點P即為所求.設(shè)直線B1C′的解析式為y=kx+b(k≠0),∵B1(﹣2,-2),C′(1,4),∴,解得:,∴直線AB2的解析式為:y=2x+2,∴當x=0時,y=2,∴P(0,2).點睛:本題主要考查軸對稱圖形的繪制和軸對稱的應(yīng)用.20、(1)y=﹣x+1;(2)﹣1<x<2;(3)3;【解題分析】

(1)根據(jù)待定系數(shù)法求一次函數(shù)和二次函數(shù)的解析式即可.(2)根據(jù)圖象以及點A,B兩點的坐標即可求出使二次函數(shù)的值大于一次函數(shù)的值的x的取值范圍;(3)連接AC、BC,設(shè)直線AB交y軸于點D,根據(jù)即可求出△ABC的面積.【題目詳解】(1)把A(﹣1,2)代入y=﹣x2+c得:﹣1+c=2,解得:c=3,∴y=﹣x2+3,把B(2,n)代入y=﹣x2+3得:n=﹣1,∴B(2,﹣1),把A(﹣1,2)、B(2,﹣1)分別代入y=kx+b得解得:∴y=﹣x+1;(2)根據(jù)圖象得:使二次函數(shù)的值大于一次函數(shù)的值的x的取值范圍是﹣1<x<2;(3)連接AC、BC,設(shè)直線AB交y軸于點D,把x=0代入y=﹣x2+3得:y=3,∴C(0,3),把x=0代入y=﹣x+1得:y=1,∴D(0,1),∴CD=3﹣1=2,則【題目點撥】考查待定系數(shù)法求二次函數(shù)解析式,三角形的面積公式等,掌握待定系數(shù)法是解題的關(guān)鍵.21、(Ⅰ)D′(3+,3);(Ⅱ)當BB'=時,四邊形MBND'是菱形,理由見解析;(Ⅲ)P().【解題分析】

(Ⅰ)如圖①中,作DH⊥BC于H.首先求出點D坐標,再求出CC′的長即可解決問題;(Ⅱ)當BB'=時,四邊形MBND'是菱形.首先證明四邊形MBND′是平行四邊形,再證明BB′=BC′即可解決問題;(Ⅲ)在△ABP中,由三角形三邊關(guān)系得,AP<AB+BP,推出當點A,B,P三點共線時,AP最大.【題目詳解】(Ⅰ)如圖①中,作DH⊥BC于H,∵△AOB是等邊三角形,DC∥OA,∴∠DCB=∠AOB=60°,∠CDB=∠A=60°,∴△CDB是等邊三角形,∵CB=2,DH⊥CB,∴CH=HB=,DH=3,∴D(6﹣,3),∵C′B=3,∴CC′=2﹣3,∴DD′=CC′=2﹣3,∴D′(3+,3).(Ⅱ)當BB'=時,四邊形MBND'是菱形,理由:如圖②中,∵△ABC是等邊三角形,∴∠ABO=60°,∴∠ABB'=180°﹣∠ABO=120°,∵BN是∠ACC'的角平分線,∴∠NBB′'=∠ABB'=60°=∠D′C′B,∴D'C'∥BN,∵AB∥B′D′∴四邊形MBND'是平行四邊形,∵∠ME'C'=∠MCE'=60°,∠NCC'=∠NC'C=60°,∴△MC′B'和△NBB'是等邊三角形,∴MC=CE',NC=CC',∵B'C'=2,∵四邊形MBND'是菱形,∴BN=BM,∴BB'=B'C'=;(Ⅲ)如圖連接BP,在△ABP中,由三角形三邊關(guān)系得,AP<AB+BP,∴當點A,B,P三點共線時,AP最大,如圖③中,在△D'BE'中,由P為D'E的中點,得AP⊥D'E',PD'=,∴CP=3,∴AP=6+3=9,在Rt△APD'中,由勾股定理得,AD'==2.此時P(,﹣).【題目點撥】此題是四邊形綜合題,主要考查了平行四邊形的判定和性質(zhì),菱形的性質(zhì),平移和旋轉(zhuǎn)的性質(zhì),等邊三角形的判定和性質(zhì),勾股定理,解(2)的關(guān)鍵是四邊形MCND'是平行四邊形,解(3)的關(guān)鍵是判斷出點A,C,P三點共線時,AP最大.22、【解題分析】

根據(jù)絕對值的性質(zhì)、零指數(shù)冪的性質(zhì)、特殊角的三角函數(shù)值、負整數(shù)指數(shù)冪的性質(zhì)、二次根式的性質(zhì)及乘方的定義分別計算后,再合并即可【題目詳解】原式.【題目點撥】此題主要考查了實數(shù)運算,正確化簡各數(shù)是解題關(guān)鍵.23、(1)甲、乙兩種套房每套提升費用為25、1萬元;(2)甲種套房提升2套,乙種套房提升30套時,y最小值為2090萬元.【解題分析】

(1)設(shè)甲種套房每套提升費用為x萬元,根據(jù)題意建立方程求出其解即可;(2)設(shè)甲種套房提升m套,那么乙種套房提升(80-m)套,根據(jù)條件建立不等式組求出其解就可以求出提升方案,再表示出總費用與m之間的函數(shù)關(guān)系式,根據(jù)一次函數(shù)的性質(zhì)就可以求出結(jié)論.【題目詳解】(1)設(shè)乙種套房提升費用為x萬元,則甲種套房提升費用為(x﹣3)萬元,則,解得x=1.經(jīng)檢驗:x=1是分式方程的解,答:甲、乙兩種套房每套提升費用為25、1萬元;(2)設(shè)甲種套房提升a套,則乙種套房提升(80﹣a)套,則2090≤25a+1(80﹣a)≤2096,解得48≤a≤2.∴共3種方案,分別為:方案一:甲種套房提升48套,乙種套房提升32套.方案二:甲種套房提升49套,乙種套房提升31套,方案三:甲種套房提升2套,乙種套房提升30套.設(shè)提升兩種套房所需要的費用為y萬元,則y=25a+1(80﹣a)=﹣3a+2240,∵k=﹣3,∴當a取最大值2時,即方案三:甲種套房提升2套,乙種套房提升30套時,y最小值為2090萬元.【題目點撥】本題考查了一次函數(shù)的性質(zhì)的運用,列分式方程解實際問題的運用,列一元一次不等式組解實際問題的運用.解答時建立方程求出甲,乙兩種套房每套提升費用是關(guān)鍵,是解答第二問的必要過程.24、(1)參與問卷調(diào)查的總?cè)藬?shù)為500人;(2)補全條形統(tǒng)計圖見解析;(3)這些人中最喜歡微信支付方式的人數(shù)約為2800人.【解題分析】

(1)根據(jù)喜歡支付寶支付的人數(shù)÷其所占各種支付方式的比例=參與問卷調(diào)查的總?cè)藬?shù),即可求出結(jié)論;

(2)根據(jù)喜歡現(xiàn)金支付的人數(shù)(41~60歲)=參與問卷調(diào)查的總?cè)藬?shù)×現(xiàn)金支付所占各種支付方式的比例-15,即可求出喜歡現(xiàn)金支付的人數(shù)(41~60歲),再將條形統(tǒng)計圖補充完整即可得出結(jié)論;

(3)根據(jù)喜歡微信支付方式的人數(shù)=社區(qū)居民人數(shù)×微信支付所占各種支付方式的比例,即可求出結(jié)論.【題目詳解】(1)(人.答:參與問卷調(diào)查的總?cè)藬?shù)為500人.(2)(人.補全條形統(tǒng)計圖,如圖所示.(3)(人.答:這些人中最喜歡微信支付方式的人數(shù)約為2800人.【題目點撥】本題考查了條形統(tǒng)計圖、扇形統(tǒng)計圖以及用樣本估計總體,解題的關(guān)鍵是:(1)觀察統(tǒng)計圖找出數(shù)據(jù),再列式計算;(2)通過計算求出喜歡現(xiàn)金支付的人數(shù)(41~60歲);(3)根據(jù)樣本的比例×總?cè)藬?shù),估算出喜歡

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論