




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
八年級數(shù)學(xué)下冊第九章圖形的相似章節(jié)練習(xí)
考試時間:90分鐘;命題人:數(shù)學(xué)教研組
考生注意:
1、本卷分第I卷(選擇題)和第H卷(非選擇題)兩部分,滿分100分,考試時間90分鐘
2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上
3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新
的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。
第I卷(選擇題30分)
一、單選題(10小題,每小題3分,共計30分)
1、如圖,〃為△46。中芯邊上一點,則添加下列條件不熊判定的是()
cABBD
A.BC2=ACCDB.=------C.4ABO4BDCD.NA=NCBD
ACBC
2、如圖,在中,EF//BC,絲=2跖則”用與梯形閱%'的面積比為()
B.2:3C.3:4D.4:5
3、如圖,在平面直角坐標(biāo)系中,AABC與A4DE是以點A為位似中心的位似圖形,且相似比為1:
2,點A在x軸上,若點A的坐標(biāo)是(1,0),點8的坐標(biāo)是(2,1),則點。的坐標(biāo)是().
A.(2,1)B.(2,2)C.(3,2)D.(3,3)
4、如下圖,D、£分另U是△力回邊的力反力。上的點,DE//BG且SAADE:S/\ABC=\:9,那么
力〃:班的值為()
A.1:9B.1:3C.1:8D.1:2
5、若點C為線段48的黃金分割點,力廬8,則然的長是()
A.4\/5~4B.9—36C.36—3或9—3石D.4石—4或12—4行
6、如圖,在△?!比中,點〃、夕在邊力片上,點尺G在邊力。上,旦DF〃EG"BC,AD=DE=EB,若
SAADF=1,則S四邊形E8CG=()
A.3B.4C.5D.6
7、如圖,在平面直角坐標(biāo)系中,等腰直角A/TBC,是等腰直角△46,以原點。為位似中心的位似圖
形,且位似比為2:1,點A(1,O),8(1,2),,在4夕上,則。點坐標(biāo)為()
A.(2,4)B.(2,2)C.(4,2)D.(4,4)
8、如圖.在中,DE//BC,且原分別交46,4C于點。,E,若AD:DB=2:1,DE=\,則比1為
()
A.6B.7C.8D.9
9、如圖,已知△458△應(yīng)凡若/心=35°,N6=65°,則/尸的度數(shù)是()
10、如圖,在中,NB=90°,AC=5,AB=3,點£是邊"上一動點,過點£作留/勿交
加于點F,。為線段價1的中點,按下列步驟作圖:①以。為圓心,適當(dāng)長為半徑畫弧交",力于點
M點②分別以加/V為圓心,適當(dāng)長為半徑畫弧,兩弧的交點為G;③作射線C&若射線而經(jīng)
過點〃則位的長度為()
M
第II卷(非選擇題70分)
二、填空題(5小題,每小題4分,共計20分)
1、如圖,在口45口中,力廬6,AD=8,的平分線交回于點凡交火8的延長線于點G,過點C作
CELDG,垂足為£,煙2,則△母'G的周長為.
2、如圖,在四邊形4?(力中,AD//BC,/BAk90:且對角線劭,47,BC=9,則物的長為
3、如圖:中,點久尸是4?邊的三等分點,點昆G是邊的三等分點,則SA比?:Smffi
DEFGzS四邊形BCGF=.
4、如圖:正方形戊況?的邊必1在△/回邊6c上,頂點〃、6分別在邊被〃上,AHLBC于H,交.DG
于尸,已知6c=48,4〃=16,一那么S正碰DGEF=.
5、如圖,正方形46位的邊長為4,對角線4C,點反尸分別在6G的延長線上,,且龍=2,DF
=1,點G為廝中點,連接0E,交CD千點、H,則陽的長為____.
三、解答題(5小題,每小題10分,共計50分)
1、(1)如圖1,在四邊形ABC£>中,對角線平分ZA8C,ZADB=NDCB,求證:
BD'=BABC-,
(2)如圖2,四邊形ABC。為平行四邊形,E在AO邊上,他="",點E在班延長線上,連結(jié)
EF,BF,CF,若NEFB=Z.DFC,BE=4,BF=5,求AD的長;
(3)如圖3,在AABC中,。是BC上一點,連結(jié)A。,點E,尸分別在A。,AC上,連結(jié)
「戶'2AF
CE,EF若DE=DC,NBEC=ZAEF,BE=12,EF=5,——求y的值.
9BC3FC
A
2
2、如圖所示,D,£分別是48,上的點,XADEsXABC,相似比是不,龍=4cm,NC=30°,求
BC,NAED.
3、如圖,48=4,09=6,尸在劭上,BC、相交于點反豆ABHCD//EF.
(1)若力6=3,求劭的長.
⑵求斯的長.
4、如圖,在△/弦中,N4/=90°,切是斜邊上的高.
(1)求證:△力如△曲;
⑵若42=3,BD=2,求切的長.
5、如圖,在中,AD平分NBAC交BC千點、D,龍〃〃'交力6于點色求證:器BE
ED
-參考答案-
一、單選題
1、B
【解析】
【分析】
由相似三角形的判定方法依次進行判斷,即可得到答案.
【詳解】
解:':BC=AC'CD,
.BCCD
?,就一正’
又,:2O4C,
:./\ABCs叢BDC,故選4不合題意,
VAABOABDC,"NG
:.XABCSRBDC,故選C不合題意,
VZJ=Zm"NG
:.叢ABCs&BDC,故選〃不合題意,
故選:B.
【點睛】
本題考查了相似三角形的判定,掌握相似三角形判定方法是關(guān)鍵.
2、D
【解析】
【分析】
證明△?!跖s4/比;利用相似三角形的性質(zhì)得到沁=(喘)2=1然后根據(jù)比例的性質(zhì)得到△力跖
與梯形宛%'的面積比.
【詳解】
解:■:AE=2BE,
.AE=2BE=2
??瓦-2BE+BE-3'
?:EF"BC,
:.XAEFSXABC,
?S-班=(色)2=(2)2=1
,』cAB)(3)91
牙■與梯形閱哂的面積比為4:5.
故選:D.
【點睛】
本題考查了相似三角形的判定與性質(zhì):在判定兩個三角形相似時,應(yīng)注意利用圖形中已有的公共角、
公共邊等隱含條件,以充分發(fā)揮基本圖形的作用;靈活運用相似三角形的性質(zhì)進行幾何計算.
3、C
【解析】
【分析】
過點反。作垂直于x軸的線交于EG點,根據(jù)位似變換的性質(zhì)得到A4BCSA4QE,且
ARRFAF1
罷=M=箓=:,根據(jù)相似三角形的性質(zhì)求出QG,AG,即可得到答案.
ADDGAG2
【詳解】
解:過點民。作垂直于x軸的線交于EG點,如下圖:
ZA=ZA,AAFB=ZAGD=90°,
.^ACF^^AEG,
.ABBFAF
,,麗一茄一布‘
???A4BC與AWE是以點A為位似中心的位似圖形,且相似比為1:2,
.AB\BFAF
,AD-2"DG-AG1
vA(l,0),B(2,l),
一.F(2,0),
BF=i,AF=lf
BFAF_1
,^DG~~AG~2f
OG=2,AG=2,
AG(3,0),D(3,2),
???點。的坐標(biāo)為(3,2),
故選:c.
【點睛】
本題考查的是位似變換,坐標(biāo)與圖形性質(zhì),解題的關(guān)鍵是掌握兩個圖形相似形的判定及性質(zhì).
4、D
【解析】
【分析】
根據(jù)相似三角形面積的比等于相似比的平方可得出答案.
【詳解】
':DE//BC,
.Si.
..S.ABCAB?9
.AD1
"AB~3
.AD1
??——
BD2
故選:D.
【點睛】
此題考查了相似三角形的判定與性質(zhì),解題的關(guān)鍵是理解相似三角形面積的比等于相似比的平方.
5,D
【解析】
【分析】
根據(jù)黃金分段的定義可知,叵口叫做黃金數(shù),當(dāng)時,生=蛙二1;當(dāng)時
2AB2
生=更二1,HpAB-AC=45-\f進行計算即可得.
AB2AB2
【詳解】
解:???點C為線段4?的黃金分割點,AB=8,
當(dāng)AC>3C時,4£=或二1,
AB2
AC=2^J.A8=^^X8=4>5-4;
22
當(dāng)AC<3C時,生=避二1,
AB2
即AB-AC=.,
AB2
18-ACV5-1
丁二M
AC=8-(4后-4)=12-46,
綜上,力。的長為46-4或12-4石,
故選D.
【點睛】
本題考查了黃金分割,解題的關(guān)鍵是要不重不漏,分情況討論力。和況1之間的長度關(guān)系.
6、C
【解析】
【分析】
利用。尸//EG〃BC,得到A4DFSA4BC,AADF^AAEG,利用AO=£>E=EB,得至|四=1,—
AB3AE2
利用相似三角形的性質(zhì),相似三角形的面積比等于相似比的平方,分別求得AAEG和AABC的面積,
利用S四邊形EBCG=SMBC-SgEG即可求得結(jié)論.
【詳解】
解:,;AD=DE=EB,
.AD1AD-1
.布一屋A£-2'
■.■DFIIEGI/BC,
.?.AADFSMBC,AADFSM£G.
.S1Mlf=(/W)2SMDF=y
一二一茄,二一罰'
?''SiABC=9sA4。廣9,鼠(£C=4sM=4.
S四邊彩£38=S1M8C-SMEC=9-4=5.
故選:c.
【點睛】
本題主要考查了相似三角形的判定與性質(zhì),解題的關(guān)鍵是利用相似三角形的面積比等于相似比的平
方,用^VSUlKEBCG~SvBC-SgEC解答.
7、C
【解析】
【分析】
取46的中點〃連接切,由等腰直角三角形的性質(zhì)及從5的坐標(biāo),可求得點。的坐標(biāo),再根據(jù)兩個
三角形的位似比即可求得點。的坐標(biāo).
【詳解】
取力6的中點〃連接口如圖
???△力必是等腰直角三角形
:.CDLAB
VA(1,O),8(1,2)
軸
."(i,i)
?.?等腰直角A/T夕。是等腰直角△/1比1以原點。為位似中心的位似圖形,且位似比為2:1
A42,0),陽2,4)
A'8'Lx軸
在48'上
."(2,1)
由位似比為2:1,則C'點坐標(biāo)為(4,2)
故選:C
【點睛】
本題考查了三角形位似的定義及性質(zhì),等腰三角形的性質(zhì)等知識,掌握三角形位似的定義是關(guān)鍵.
8、A
【解析】
【分析】
根據(jù)DEHBC易任協(xié)即△ABC,根據(jù)對應(yīng)邊相似比相等即可求得6C的值.
【詳解】
解:':DE//BC,
:、XADESMABC,
?ADDE
??瓦一就‘
..AD.
?麗=2,
:.—=又出4,
AB3
.AD4_2
*'AB-ec-3,
:.BO6,
故選A.
【點睛】
本題考查了相似三角形的判定,考查了相似三角形對應(yīng)邊比例相等的性質(zhì).
9、C
【解析】
【分析】
先根據(jù)三角形內(nèi)角和定理求出NC的度數(shù),再根據(jù)相似三角形對應(yīng)角相等即可解決問題.
【詳解】
解:中,N4=35°,Z5=65°,
.,.Z^180°-ZJ-Z5-1800-35°-65°=80°,
又:△Ws△龍汽,
片/年80°,
故選:C.
【點睛】
本題考查相似三角形的性質(zhì),掌握相似三角形對應(yīng)角相等是解題的關(guān)鍵.也考查了三角形內(nèi)角和定
理.
10、c
【解析】
【分析】
分析:先利用勾股定理計算出a'=4,利用基本作圖得到切平分再證明/腔、=/。宓得到
2r4—X
EC=ED,沒CE=x,則防=2x,BE=4-x,接著證明△呼■6△用力利用相似比得到一=-然
54
后解方程即可.
【詳解】
解:VZ5=90°,4C=5,48=3,
JBC=y]AC2-AB2=舊-32=4,
由作法得CD平分4ACB,
"DCE=/DCA,
VEFIIAC,
:"DCA=/CDE,
:?/DCE=/CDE,
:?EC=ED,
???〃點為新的中點,
:.DE=DF,
設(shè)CE=x,則研=2x,BE=4-x,
、:EFHAC,
:.XBEFS^BCA,
喋喑,即泮4-x,解得彳=方20
4
即位的長為言.
故選:C.
【點晴】
本題考查了基本作圖,相似三角形的判定與性質(zhì),熟練掌握以上知識點是解題的關(guān)鍵.
二、填空題
..8及
1、4+----
3
【解析】
【分析】
首先利用已知條件可證明是等腰三角形,根據(jù)等腰三角形''三線合一”的性質(zhì)得出旌2龐;而
在戊△。應(yīng)中,由勾股定理可求得龐的值,即可求得小的長,從而求出△。叨的周長;然后,證明
XCDNXBFG,然后根據(jù)周長比等于相似比即可得到答案.
【詳解】
解:是N4%的平分線
???四邊形ABQ)是平行四邊形
AD//BC
^ADE=NCDF=NDFC
:.CD=FC=AB=6
-.■CE±DG
:.DF=2DE
在RtZ^CDE中
ZDEC=90°,CD=6,CE=2
..DE=yjCD2-CE2=472
:.DF=2DE=Syf2
」.△8尸的周長為12+8四
???CF=6,BC=AD=8
..HF=BC-CF=S-6=2
.-.CF:BF=6:2=3:1
AB//CD
:ADFs^BFG
,JCCDF二?3
C、BFG1
,AB尸G的周長為4+延
3
故答案為:4+延
3
【點睛】
本題考查了平行四邊形的性質(zhì),相似三角形的判定與性質(zhì),勾股定理等知識,熟練運用以上知識是解
題的關(guān)鍵.
2、6
【解析】
【分析】
先證明△/應(yīng)比;通過對應(yīng)邊相等計算出劭的長度.
【詳解】
解:':AD//BC,BD1DC,
:.NADB=NDBG且/BDO9Q°,
,/BAANBDC,
:.△ADBSXDBC,
,ADBD
,/?D2=A£>BC=4X9=36,
:.BD=6(負值舍去),
故答案為:6.
【點睛】
本題考查三角形相似的判定和性質(zhì),熟練掌握三角形相似的判定定理是解決本題的關(guān)鍵.
3、1:3:5
【解析】
【分析】
根據(jù)a7〃紀(jì)得出△仍;s△/闈利用相似三角形對應(yīng)邊上高的比等于相似比,列方程求出正方形的
邊長,則可得出答案.
【詳解】
解:?.?點。、尸是力6邊的三等分點,點反G是邊的三等分點,
:.DE//FG//BC,
:.XADEsXAFGs/XABC,設(shè)△力龐的面積為r,
.SvADE__J_
Fq-AF-4'
/?S^A//=4m,
..黑^=(四)2」
?5.A0cAB9'
/.S八ABC=9ni,
SAADE=m,S四邊形DEFG=SAAFG-SAADE=4m-m='ini,S四邊形BCGF=S^ABC-%AFG=9m-4m=
5m,
:.SAADE-.S四邊形%年S四邊形a'G戶=1:3:5,
故答案為:1:3:5.
【點睛】
本題考查相似三角形的判定和性質(zhì),解題的關(guān)鍵是學(xué)會利用參數(shù)解決問題,屬于中考??碱}型.
4、144
【解析】
【分析】
根據(jù)〃a'得出利用相似三角形對應(yīng)邊上高的比等于相似比,列方程求出正方形的
邊長,則可得出答案.
【詳解】
解:設(shè)正方形戊麻的邊長為X.
由正方形加%得,DG//EF,即〃G〃比;
?:AHLBC,
:.APVDG.
,:DG〃BC,
:./\ADG^/\ABQ
?DGAP
■:PH工BC,DEIBC,
:?PH=ED,AP=AH-PH,
RnDGAH-PH
CBAH
由a=48,4〃=16,DE=DG=x,
4nx16-x
得一=-----
4816
解得x=12.
.?.正方形〃曲;的邊長是12,
正方形DGEF=D^=1*=I44.
故答案為:144.
【點睛】
本題考查了相似三角形的判定與性質(zhì),正方形的性質(zhì).解題的關(guān)鍵是由平行線得到相似三角形,利用
相似三角形的性質(zhì)列出方程.
5、爭#?
【解析】
【分析】
過點。作QkSC于弘過點G作目L"與M先證△。。上△力昆可得〃滬2,C滬—8C=—'4=2,
22
CH2IFNNGFG
根據(jù)加〃〃隊得出@=此即==:==,再證==求出呼2.5,衿1,
0MME242FCCEFE
根據(jù)勾股定理在RtaA』%中階JNG'+N/=,『+1.52;至即可.
【詳解】
解:過點。作ML6C于M,過點G作?與N,
???四邊形力靦為正方形,
:.CO=OA,N4吐90°,
XCONSXCAB,
CO=OM=GV/=1
BC2OC43c2
解得。滬2,C/仁—BC=—x4=2,
22
?;CE=2,
:?MOC序2,M&MaC斤4,
?.*CH//AB,
:.CH//OM,
,?.絲=空即空=24
OMME242
:?C+1,
、:GN'CF,/分層90。,
C.GN//CE,點G為野中點,
:./\FGN^/\FEQ
.FNNGFG刖FNNGFG1
??==即==---=-
FCCEFEFCCE2FG2
VZV^l,
,華辦ZVM+]=5,
?理一皿£
?,5-2=2,
解得外邑2.5,陽=1,
:.NH^CF~FWak5-2.5-1=1.5,
在RtZ\A必;中GNNG'NH?=4+1.52弓瓜
故答案為:夜3.
【點睛】
本題考查正方形性質(zhì),平行線判定與性質(zhì),平行線等分線段性質(zhì),三角形相似判定與性質(zhì),線段和
差,勾股定理,掌握正方形性質(zhì),平行線判定與性質(zhì),平行線等分線段性質(zhì),三角形相似判定與性
質(zhì),線段和差,勾股定理是解題關(guān)鍵.
三、解答題
255
1、(1)見解析;(2)y;(3)
【解析】
【分析】
(1)由8。平分ZABC可推出=進而可知△ADBSADCB,由相似三角形對應(yīng)邊之比
相等可知BQ?=848C;
(2)由平行四邊形的性質(zhì)可證△EFBs△尸CB,由相似三角形對應(yīng)邊之比相等可知B尸=BE-BC,
進而可計算出弦的長度;
(3)過點C作AD的平行線交E尸延長線于點G,通過證明對應(yīng)角相等可知△BCES^ECG,進而可
oAFF'F'S
證號=于=3,從而可計算出EG=8,通過平行和相似三角形可知蕓=蕓='?
BEBC3FCFG3
【詳解】
(1)??,平分ZABC,
:.ZABD=NCBD,
■:AADB=/DCB,
???LADBsADCB,
,ABBD
??=,
BDBC
:.BD?=BABC.
(2)在oABCQ中,AD//BC,
:.ZAFB=NFBC,
VAB=AF,
???ZAFB=ZABF,
:.ZFBC=ZABF,
丁/DFC=/FCB=/EFB,
:.AfFB^AFCB,
??.BF?=BEBC,
25
.?.BC=AD=—.
4
E
(3)過點C作AO的平行線交即延長線于點G,
ZAEF=ZCGE=ZCEB,/DEC=NECG,
,?DE=DC,
/DEC=NDCE,
NECG=4BCE,
ABCESAECG,
.EGCE_2
;施=12,
EG=8,
:AE//CG,
【點睛】
本題考查相似三角形的性質(zhì)與判定,平行四邊形的性質(zhì),以及平行線的性質(zhì),能夠在復(fù)雜的條件中找
到適合的條件證明相似,是解決本題的關(guān)鍵.
2、5(7=10cm,N/1威=30°
【解析】
【分析】
根據(jù)題意,利用相似三角形的性質(zhì)求解,即可得到答案.
【詳解】
■:XADES&ABC,
NAED=NC=30°,---=一,
BC5
?朦=4cm,
/.j?C=10cm.
【點睛】
本題考查了相似三角形的知識;解題的關(guān)鍵是熟練掌握相似三角形的性質(zhì),從而完成求解.
3、⑴
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 工程經(jīng)濟的資金管理策略試題及答案
- 唾液腺黏液囊腫
- 美術(shù)雕刻土豆課件
- 工程經(jīng)濟運營管理試題及答案
- 2025年工程項目管理個人能力提升試題及答案
- 工程項目管理產(chǎn)品生命周期試題及答案
- 物流管理信息系統(tǒng)設(shè)計
- 初中寒假交通安全教育
- 工程經(jīng)濟學(xué)前沿問題試題及答案
- 藝考教育創(chuàng)業(yè)計劃書
- “校園之星”評選實施方案
- 部編版二年級下冊語文園地八(完美版)教學(xué)設(shè)計1
- 《安全生產(chǎn)法培訓(xùn)課件》(2021版)
- 庫車中原石油化工有限公司11萬噸年凝析油分離及輕烴芳構(gòu)化項目環(huán)境影響評價報告書
- 石膏板吊頂施工方案
- WORD VBA編程 從零開始學(xué)VBA
- 機動車檢測站可行性研究報告-建設(shè)機動車檢測站可行性報告
- 高二英語外研版選擇性必修三U4 AI:a real threat教學(xué)課件(精編)
- 投標(biāo)函(格式范本)
- stype kit操作手冊第一步調(diào)整水平平衡儀
- 2022年10月上海閔行職業(yè)技術(shù)學(xué)院公開招聘優(yōu)秀高校教師筆試題庫(答案解析)
評論
0/150
提交評論