![陜西西安鐵一中學2024屆中考數學適應性模擬試題含解析_第1頁](http://file4.renrendoc.com/view10/M03/1C/37/wKhkGWVnsLKAY15xAAJZ5NGa9oE153.jpg)
![陜西西安鐵一中學2024屆中考數學適應性模擬試題含解析_第2頁](http://file4.renrendoc.com/view10/M03/1C/37/wKhkGWVnsLKAY15xAAJZ5NGa9oE1532.jpg)
![陜西西安鐵一中學2024屆中考數學適應性模擬試題含解析_第3頁](http://file4.renrendoc.com/view10/M03/1C/37/wKhkGWVnsLKAY15xAAJZ5NGa9oE1533.jpg)
![陜西西安鐵一中學2024屆中考數學適應性模擬試題含解析_第4頁](http://file4.renrendoc.com/view10/M03/1C/37/wKhkGWVnsLKAY15xAAJZ5NGa9oE1534.jpg)
![陜西西安鐵一中學2024屆中考數學適應性模擬試題含解析_第5頁](http://file4.renrendoc.com/view10/M03/1C/37/wKhkGWVnsLKAY15xAAJZ5NGa9oE1535.jpg)
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
陜西西安鐵一中學2024屆中考數學適應性模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.圖(1)是一個長為2m,寬為2n(m>n)的長方形,用剪刀沿圖中虛線(對稱軸)剪開,把它分成四塊形狀和大小都一樣的小長方形,然后按圖(2)那樣拼成一個正方形,則中間空的部分的面積是()A.2mn B.(m+n)2 C.(m-n)2 D.m2-n22.二次函數的對稱軸是A.直線 B.直線 C.y軸 D.x軸3.如圖,A、B、C是⊙O上的三點,∠BAC=30°,則∠BOC的大小是()A.30° B.60° C.90° D.45°4.估計介于()A.0與1之間 B.1與2之間 C.2與3之間 D.3與4之間5.五個新籃球的質量(單位:克)分別是+5、﹣3.5、+0.7、﹣2.5、﹣0.6,正數表示超過標準質量的克數,負數表示不足標準質量的克數.僅從輕重的角度看,最接近標準的籃球的質量是()A.﹣2.5 B.﹣0.6 C.+0.7 D.+56.某車間有26名工人,每人每天可以生產800個螺釘或1000個螺母,1個螺釘需要配2個螺母,為使每天生產的螺釘和螺母剛好配套.設安排x名工人生產螺釘,則下面所列方程正確的是()A.2×1000(26﹣x)=800x B.1000(13﹣x)=800xC.1000(26﹣x)=2×800x D.1000(26﹣x)=800x7.下列各式中計算正確的是()A.x3?x3=2x6 B.(xy2)3=xy6 C.(a3)2=a5 D.t10÷t9=t8.如圖,AD是⊙O的弦,過點O作AD的垂線,垂足為點C,交⊙O于點F,過點A作⊙O的切線,交OF的延長線于點E.若CO=1,AD=2,則圖中陰影部分的面積為A.4-π B.2-πC.4-π D.2-π9.從邊長為的大正方形紙板中挖去一個邊長為的小正方形紙板后,將其裁成四個相同的等腰梯形(如圖甲),然后拼成一個平行四邊形(如圖乙)。那么通過計算兩個圖形陰影部分的面積,可以驗證成立的公式為()A. B.C. D.10.如圖,一把帶有60°角的三角尺放在兩條平行線間,已知量得平行線間的距離為12cm,三角尺最短邊和平行線成45°角,則三角尺斜邊的長度為()A.12cm B.12cm C.24cm D.24cm二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,在四邊形紙片ABCD中,AB=BC,AD=CD,∠A=∠C=90°,∠B=150°.將紙片先沿直線BD對折,再將對折后的圖形沿從一個頂點出發(fā)的直線裁剪,剪開后的圖形打開鋪平.若鋪平后的圖形中有一個是面積為2的平行四邊形,則CD=_________.12.某種商品每件進價為20元,調查表明:在某段時間內若以每件x元(20≤x≤30,且x為整數)出售,可賣出(30﹣x)件.若使利潤最大,每件的售價應為______元.13.拋物線向右平移1個單位,再向下平移2個單位所得拋物線是__________.14.點A(-2,1)在第_______象限.15.若x=﹣1是關于x的一元二次方程x2+3x+m+1=0的一個解,則m的值為______.16.如圖,BP是△ABC中∠ABC的平分線,CP是∠ACB的外角的平分線,如果∠ABP=20°,∠ACP=50°,則∠P=______°.三、解答題(共8題,共72分)17.(8分)如圖,菱形ABCD的邊長為20cm,∠ABC=120°,對角線AC,BD相交于點O,動點P從點A出發(fā),以4cm/s的速度,沿A→B的路線向點B運動;過點P作PQ∥BD,與AC相交于點Q,設運動時間為t秒,0<t<1.(1)設四邊形PQCB的面積為S,求S與t的關系式;(2)若點Q關于O的對稱點為M,過點P且垂直于AB的直線l交菱形ABCD的邊AD(或CD)于點N,當t為何值時,點P、M、N在一直線上?(3)直線PN與AC相交于H點,連接PM,NM,是否存在某一時刻t,使得直線PN平分四邊形APMN的面積?若存在,求出t的值;若不存在,請說明理由.18.(8分)如圖,拋物線y=-x2+bx+c與x軸交于A、B兩點,且B點的坐標為(3,0),經過A點的直線交拋物線于點D(2,3).求拋物線的解析式和直線AD的解析式;過x軸上的點E(a,0)作直線EF∥AD,交拋物線于點F,是否存在實數a,使得以A、D、E、F為頂點的四邊形是平行四邊形?如果存在,求出滿足條件的a;如果不存在,請說明理由.19.(8分)某同學報名參加校運動會,有以下5個項目可供選擇:徑賽項目:100m,200m,分別用、、表示;田賽項目:跳遠,跳高分別用、表示.該同學從5個項目中任選一個,恰好是田賽項目的概率為______;該同學從5個項目中任選兩個,利用樹狀圖或表格列舉出所有可能出現的結果,并求恰好是一個田賽項目和一個徑賽項目的概率.20.(8分)(閱讀)如圖1,在等腰△ABC中,AB=AC,AC邊上的高為h,M是底邊BC上的任意一點,點M到腰AB、AC的距離分別為h1,h1.連接AM.∵∴(思考)在上述問題中,h1,h1與h的數量關系為:.(探究)如圖1,當點M在BC延長線上時,h1、h1、h之間有怎樣的數量關系式?并說明理由.(應用)如圖3,在平面直角坐標系中有兩條直線l1:,l1:y=-3x+3,若l1上的一點M到l1的距離是1,請運用上述結論求出點M的坐標.21.(8分)已知PA與⊙O相切于點A,B、C是⊙O上的兩點(1)如圖①,PB與⊙O相切于點B,AC是⊙O的直徑若∠BAC=25°;求∠P的大小(2)如圖②,PB與⊙O相交于點D,且PD=DB,若∠ACB=90°,求∠P的大小22.(10分)鄂州市化工材料經銷公司購進一種化工原料若干千克,價格為每千克30元.物價部門規(guī)定其銷售單價不高于每千克60元,不低于每千克30元.經市場調查發(fā)現:日銷售量y(千克)是銷售單價x(元)的一次函數,且當x=60時,y=80;x=50時,y=1.在銷售過程中,每天還要支付其他費用450元.求出y與x的函數關系式,并寫出自變量x的取值范圍.求該公司銷售該原料日獲利w(元)與銷售單價x(元)之間的函數關系式.當銷售單價為多少元時,該公司日獲利最大?最大獲利是多少元?23.(12分)每到春夏交替時節(jié),雌性楊樹會以滿天飛絮的方式來傳播下一代,漫天飛舞的楊絮易引發(fā)皮膚病、呼吸道疾病等,給人們造成困擾,為了解市民對治理楊絮方法的贊同情況,某課題小組隨機調查了部分市民(問卷調查表如表所示),并根據調查結果繪制了如下尚不完整的統計圖.治理楊絮一一您選哪一項?(單選)A.減少楊樹新增面積,控制楊樹每年的栽種量B.調整樹種結構,逐漸更換現有楊樹C.選育無絮楊品種,并推廣種植D.對雌性楊樹注射生物干擾素,避免產生飛絮E.其他根據以上統計圖,解答下列問題:(1)本次接受調查的市民共有人;(2)扇形統計圖中,扇形E的圓心角度數是;(3)請補全條形統計圖;(4)若該市約有90萬人,請估計贊同“選育無絮楊品種,并推廣種植”的人數.24.閱讀下面材料:已知:如圖,在正方形ABCD中,邊AB=a1.按照以下操作步驟,可以從該正方形開始,構造一系列的正方形,它們之間的邊滿足一定的關系,并且一個比一個?。僮鞑襟E作法由操作步驟推斷(僅選取部分結論)第一步在第一個正方形ABCD的對角線AC上截取AE=a1,再作EF⊥AC于點E,EF與邊BC交于點F,記CE=a2(i)△EAF≌△BAF(判定依據是①);(ii)△CEF是等腰直角三角形;(iii)用含a1的式子表示a2為②:第二步以CE為邊構造第二個正方形CEFG;第三步在第二個正方形的對角線CF上截取FH=a2,再作IH⊥CF于點H,IH與邊CE交于點I,記CH=a3:(iv)用只含a1的式子表示a3為③:第四步以CH為邊構造第三個正方形CHIJ這個過程可以不斷進行下去.若第n個正方形的邊長為an,用只含a1的式子表示an為④請解決以下問題:(1)完成表格中的填空:①;②;③;④;(2)根據以上第三步、第四步的作法畫出第三個正方形CHIJ(不要求尺規(guī)作圖).
參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解題分析】
解:由題意可得,正方形的邊長為(m+n),故正方形的面積為(m+n)1.又∵原矩形的面積為4mn,∴中間空的部分的面積=(m+n)1-4mn=(m-n)1.故選C.2、C【解題分析】
根據頂點式y=a(x-h)2+k的對稱軸是直線x=h,找出h即可得出答案.【題目詳解】解:二次函數y=x2的對稱軸為y軸.
故選:C.【題目點撥】本題考查二次函數的性質,解題關鍵是頂點式y=a(x-h)2+k的對稱軸是直線x=h,頂點坐標為(h,k).3、B【解題分析】【分析】欲求∠BOC,又已知一圓周角∠BAC,可利用圓周角與圓心角的關系求解.【題目詳解】∵∠BAC=30°,∴∠BOC=2∠BAC=60°(同弧所對的圓周角是圓心角的一半),故選B.【題目點撥】本題考查了圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.4、C【解題分析】
解:∵,∴,即∴估計在2~3之間故選C.【題目點撥】本題考查估計無理數的大小.5、B【解題分析】
求它們的絕對值,比較大小,絕對值小的最接近標準的籃球的質量.【題目詳解】解:|+5|=5,|-3.5|=3.5,|+0.7|=0.7,|-2.5|=2.5,|-0.6|=0.6,∵5>3.5>2.5>0.7>0.6,∴最接近標準的籃球的質量是-0.6,故選B.【題目點撥】本題考查了正數和負數,掌握正數和負數的定義以及意義是解題的關鍵.6、C【解題分析】
試題分析:此題等量關系為:2×螺釘總數=螺母總數.據此設未知數列出方程即可【題目詳解】.故選C.解:設安排x名工人生產螺釘,則(26-x)人生產螺母,由題意得
1000(26-x)=2×800x,故C答案正確,考點:一元一次方程.7、D【解題分析】試題解析:A、原式計算錯誤,故本選項錯誤;B、原式計算錯誤,故本選項錯誤;C、原式計算錯誤,故本選項錯誤;D、原式計算正確,故本選項正確;故選D.點睛:同底數冪相除,底數不變,指數相減.8、B【解題分析】
由S陰影=S△OAE-S扇形OAF,分別求出S△OAE、S扇形OAF即可;【題目詳解】連接OA,OD
∵OF⊥AD,
∴AC=CD=,
在Rt△OAC中,由tan∠AOC=知,∠AOC=60°,
則∠DOA=120°,OA=2,
∴Rt△OAE中,∠AOE=60°,OA=2
∴AE=2,S陰影=S△OAE-S扇形OAF=×2×2-.故選B.【題目點撥】考查了切線的判定和性質;能夠通過作輔助線將所求的角轉移到相應的直角三角形中,是解答此題的關鍵要證某線是圓的切線,對于切線的判定:已知此線過圓上某點,連接圓心與這點(即為半徑),再證垂直即可.9、D【解題分析】
分別根據正方形及平行四邊形的面積公式求得甲、乙中陰影部分的面積,從而得到可以驗證成立的公式.【題目詳解】陰影部分的面積相等,即甲的面積=a2﹣b2,乙的面積=(a+b)(a﹣b).即:a2﹣b2=(a+b)(a﹣b).所以驗證成立的公式為:a2﹣b2=(a+b)(a﹣b).故選:D.【題目點撥】考點:等腰梯形的性質;平方差公式的幾何背景;平行四邊形的性質.10、D【解題分析】
過A作AD⊥BF于D,根據45°角的三角函數值可求出AB的長度,根據含30°角的直角三角形的性質求出斜邊AC的長即可.【題目詳解】如圖,過A作AD⊥BF于D,∵∠ABD=45°,AD=12,∴=12,又∵Rt△ABC中,∠C=30°,∴AC=2AB=24,故選:D.【題目點撥】本題考查解直角三角形,在直角三角形中,30°角所對的直角邊等于斜邊的一半,熟記特殊角三角函數值是解題關鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、或【解題分析】
根據裁開折疊之后平行四邊形的面積可得CD的長度為2+4或2+.【題目詳解】如圖①,當四邊形ABCE為平行四邊形時,作AE∥BC,延長AE交CD于點N,過點B作BT⊥EC于點T.∵AB=BC,∴四邊形ABCE是菱形.∵∠BAD=∠BCD=90°,∠ABC=150°,∴∠ADC=30°,∠BAN=∠BCE=30°,∴∠NAD=60°,∴∠AND=90°.設BT=x,則CN=x,BC=EC=2x.∵四邊形ABCE面積為2,∴EC·BT=2,即2x×x=2,解得x=1,∴AE=EC=2,EN=,∴AN=AE+EN=2+,∴CD=AD=2AN=4+2.如圖②,當四邊形BEDF是平行四邊形,∵BE=BF,∴平行四邊形BEDF是菱形.∵∠A=∠C=90°,∠ABC=150°,∴∠ADB=∠BDC=15°.∵BE=DE,∴∠EBD=∠ADB=15°,∴∠AEB=30°.設AB=y,則DE=BE=2y,AE=y.∵四邊形BEDF的面積為2,∴AB·DE=2,即2y2=2,解得y=1,∴AE=,DE=2,∴AD=AE+DE=2+.綜上所述,CD的值為4+2或2+.【題目點撥】考核知識點:平行四邊形的性質,菱形判定和性質.12、3【解題分析】試題分析:設最大利潤為w元,則w=(x﹣30)(30﹣x)=﹣(x﹣3)3+3,∵30≤x≤30,∴當x=3時,二次函數有最大值3,故答案為3.考點:3.二次函數的應用;3.銷售問題.13、(或)【解題分析】
將拋物線化為頂點式,再按照“左加右減,上加下減”的規(guī)律平移即可.【題目詳解】解:化為頂點式得:,∴向右平移1個單位,再向下平移2個單位得:,化為一般式得:,故答案為:(或).【題目點撥】此題不僅考查了對圖象平移的理解,同時考查了學生將一般式轉化頂點式的能力.14、二【解題分析】
根據點在第二象限的坐標特點解答即可.【題目詳解】∵點A的橫坐標-2<0,縱坐標1>0,∴點A在第二象限內.故答案為:二.【題目點撥】本題主要考查了平面直角坐標系中各個象限的點的坐標的符號特點:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).15、1【解題分析】試題分析:將x=﹣1代入方程得:1﹣3+m+1=0,解得:m=1.考點:一元二次方程的解.16、30【解題分析】
根據角平分線的定義可得∠PBC=20°,∠PCM=50°,根據三角形外角性質即可求出∠P的度數.【題目詳解】∵BP是∠ABC的平分線,CP是∠ACM的平分線,∠ABP=20°,∠ACP=50°,∴∠PBC=20°,∠PCM=50°,∵∠PBC+∠P=∠PCM,∴∠P=∠PCM-∠PBC=50°-20°=30°,故答案為:30【題目點撥】本題考查及角平分線的定義及三角形外角性質,三角形的外角等于和它不相鄰的兩個內角的和,熟練掌握三角形外角性質是解題關鍵.三、解答題(共8題,共72分)17、(1)S=﹣2(0<t<1);(2);(3)見解析.【解題分析】
(1)如圖1,根據S=S△ABC-S△APQ,代入可得S與t的關系式;
(2)設PM=x,則AM=2x,可得AP=x=4t,計算x的值,根據直角三角形30度角的性質可得AM=2PM=,根據AM=AO+OM,列方程可得t的值;
(3)存在,通過畫圖可知:N在CD上時,直線PN平分四邊形APMN的面積,根據面積相等可得MG=AP,由AM=AO+OM,列式可得t的值.【題目詳解】解:(1)如圖1,∵四邊形ABCD是菱形,∴∠ABD=∠DBC=∠ABC=60°,AC⊥BD,∴∠OAB=30°,∵AB=20,∴OB=10,AO=10,由題意得:AP=4t,∴PQ=2t,AQ=2t,∴S=S△ABC﹣S△APQ,=,=,=﹣2t2+100(0<t<1);(2)如圖2,在Rt△APM中,AP=4t,∵點Q關于O的對稱點為M,∴OM=OQ,設PM=x,則AM=2x,∴AP=x=4t,∴x=,∴AM=2PM=,∵AM=AO+OM,∴=10+10﹣2t,t=;答:當t為秒時,點P、M、N在一直線上;(3)存在,如圖3,∵直線PN平分四邊形APMN的面積,∴S△APN=S△PMN,過M作MG⊥PN于G,∴,∴MG=AP,易得△APH≌△MGH,∴AH=HM=t,∵AM=AO+OM,同理可知:OM=OQ=10﹣2t,t=10=10﹣2t,t=.答:當t為秒時,使得直線PN平分四邊形APMN的面積.【題目點撥】考查了全等三角形的判定與性質,對稱的性質,三角形和四邊形的面積,二次根式的化簡等知識點,計算量大,解答本題的關鍵是熟練掌握動點運動時所構成的三角形各邊的關系.18、(1)y=-x2+2x+3;y=x+1;(2)a的值為-3或.【解題分析】
(1)把點B和D的坐標代入拋物線y=-x2+bx+c得出方程組,解方程組即可;由拋物線解析式求出點A的坐標,設直線AD的解析式為y=kx+a,把A和D的坐標代入得出方程組,解方程組即可;(2)分兩種情況:①當a<-1時,DF∥AE且DF=AE,得出F(0,3),由AE=-1-a=2,求出a的值;②當a>-1時,顯然F應在x軸下方,EF∥AD且EF=AD,設F(a-3,-3),代入拋物線解析式,即可得出結果.【題目詳解】解:(1)把點B和D的坐標代入拋物線y=-x2+bx+c得:解得:b=2,c=3,∴拋物線的解析式為y=-x2+2x+3;當y=0時,-x2+2x+3=0,解得:x=3,或x=-1,∵B(3,0),∴A(-1,0);設直線AD的解析式為y=kx+a,把A和D的坐標代入得:解得:k=1,a=1,∴直線AD的解析式為y=x+1;(2)分兩種情況:①當a<-1時,DF∥AE且DF=AE,則F點即為(0,3),∵AE=-1-a=2,∴a=-3;②當a>-1時,顯然F應在x軸下方,EF∥AD且EF=AD,設F(a-3,-3),由-(a-3)2+2(a-3)+3=-3,解得:a=;綜上所述,滿足條件的a的值為-3或.【題目點撥】本題考查拋物線與x軸的交點;二次函數的性質;待定系數法求二次函數解析式及平行四邊形的判定,綜合性較強.19、(1);(2).【解題分析】
(1)由5個項目中田賽項目有2個,直接利用概率公式求解即可求得答案;(2)首先根據題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結果與恰好是一個田賽項目和一個徑賽項目的情況,再利用概率公式即可求得答案.【題目詳解】(1)∵5個項目中田賽項目有2個,∴該同學從5個項目中任選一個,恰好是田賽項目的概率為:.故答案為;(2)畫樹狀圖得:∵共有20種等可能的結果,恰好是一個田賽項目和一個徑賽項目的有12種情況,∴恰好是一個田賽項目和一個徑賽項目的概率為:.【題目點撥】本題考查了用列表法或畫樹狀圖法求概率.列表法或畫樹狀圖法可以不重復不遺漏的列出所有可能的結果,列表法適合于兩步完成的事件,樹狀圖法適合兩步或兩步以上完成的事件.用到的知識點為:概率=所求情況數與總情況數之比.20、【思考】h1+h1=h;【探究】h1-h(huán)1=h.理由見解析;【應用】所求點M的坐標為(,1)或(-,4).【解題分析】
思考:根據等腰三角形的性質,把代數式化簡可得.探究:當點M在BC延長線上時,連接,可得,化簡可得.應用:先證明,△ABC為等腰三角形,即可運用上面得到的性質,再分點M在BC邊上和在CB延長線上兩種情況討論,第一種有1+My=OB,第二種為My-1=OB,解得的縱坐標,再分別代入的解析式即可求解.【題目詳解】思考即h1+h1=h.探究h1-h(huán)1=h.理由.連接,∵∴∴h1-h(huán)1=h.應用在中,令x=0得y=3;令y=0得x=-4,則:A(-4,0),B(0,3)同理求得C(1,0),,又因為AC=5,所以AB=AC,即△ABC為等腰三角形.①當點M在BC邊上時,由h1+h1=h得:1+My=OB,My=3-1=1,把它代入y=-3x+3中求得:,∴;②當點M在CB延長線上時,由h1-h(huán)1=h得:My-1=OB,My=3+1=4,把它代入y=-3x+3中求得:,∴,綜上,所求點M的坐標為或.【題目點撥】本題結合三角形的面積和等腰三角形的性質考查了新性質的推理與證明,熟練掌握三角形的性質,結合圖形層層推進是解答的關鍵.21、(1)∠P=50°;(2)∠P=45°.【解題分析】
(1)連接OB,根據切線長定理得到PA=PB,∠PAO=∠PBO=90°,根據三角形內角和定理計算即可;
(2)連接AB、AD,根據圓周角定理得到∠ADB=90°,根據切線的性質得到AB⊥PA,根據等腰直角三角形的性質解答.【題目詳解】解:(1)如圖①,連接OB.∵PA、PB與⊙O相切于A、B點,∴PA=PB,∴∠PAO=∠PBO=90°∴∠PAB=∠PBA,∵∠BAC=25°,∴∠PBA=∠PAB=90°一∠BAC=65°∴∠P=180°-∠PAB-∠PBA=50°;(2)如圖②,連接AB、AD,∵∠ACB=90°,∴AB是的直徑,∠ADB=90·∵PD=DB,∴PA=AB.∵PA與⊙O相切于A點∴AB⊥PA,∴∠P=∠ABP=45°.【題目點撥】本題考查的是切線的性質、圓周角定理,掌握圓的切線垂直于過切點的半徑是解題的關鍵.22、(1)y=-2x+200(30≤x≤60)(2)w=-2(x-65)2+2000);(3)當銷售單價為60元時,該公司日獲利最大,為1950元【解題分析】
(1)設出一次函數解析式,把相應數值代入即可.(2)根據利潤計算公式列式即可;(3)進行配方求值即可.【題目詳解】(1)設y=kx+b,根據題意得解得:∴y=-2x+200(30≤x≤60)(2)W=(x-30)(-2x+200)-450=-2x2+260x-6450=-2(x-65)2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年企業(yè)市場營銷策劃委托協議書樣本
- 2025年合作伙伴店鋪聯合經營協議
- 2025年共發(fā)展合作協議示例
- 2025年居民小區(qū)消防系統設計申請與施工協議
- 2025年先進技術許可合同規(guī)范模板
- 2025年全球貿易增長與多邊合作協議
- 2025年協作一致行動人協議樣本
- 2025年大型卡車租賃服務合同
- 2025年臨時設備租賃合同范文規(guī)定
- 2025年產品策劃與服務供需雙方合同書
- 學校小賣部承包合同范文
- 普外腹腔鏡手術護理常規(guī)
- 2025年湖南鐵道職業(yè)技術學院高職單招職業(yè)技能測試近5年??及鎱⒖碱}庫含答案解析
- 2024年全國職業(yè)院校技能大賽(礦井災害應急救援賽項)考試題庫(含答案)
- 《預制高強混凝土風電塔筒生產技術規(guī)程》文本附編制說明
- 2025年浙江省溫州樂清市融媒體中心招聘4人歷年高頻重點提升(共500題)附帶答案詳解
- 2025年煤礦探放水證考試題庫
- C語言程序設計 教案
- 農業(yè)機械設備運輸及調試方案
- 2025新譯林版英語七年級下單詞表
- 海洋工程設備保溫保冷方案
評論
0/150
提交評論