版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2024屆濰坊市重點中學(xué)中考考前最后一卷數(shù)學(xué)試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.(2017?鄂州)如圖四邊形ABCD中,AD∥BC,∠BCD=90°,AB=BC+AD,∠DAC=45°,E為CD上一點,且∠BAE=45°.若CD=4,則△ABE的面積為()A.127B.247C.482.若正多邊形的一個內(nèi)角是150°,則該正多邊形的邊數(shù)是()A.6B.12C.16D.183.如圖,在Rt△ABC中,∠ACB=90°,∠A=30°,D,E,F(xiàn)分別為AB,AC,AD的中點,若BC=2,則EF的長度為()A.12B.1C.324.如圖,AB∥CD,F(xiàn)H平分∠BFG,∠EFB=58°,則下列說法錯誤的是()A.∠EGD=58° B.GF=GH C.∠FHG=61° D.FG=FH5.如圖,在△ABC中,∠CAB=75°,在同一平面內(nèi),將△ABC繞點A逆時針旋轉(zhuǎn)到△AB′C′的位置,使得CC′∥AB,則∠CAC′為()A.30° B.35° C.40° D.50°6.有一種球狀細菌的直徑用科學(xué)記數(shù)法表示為2.16×10﹣3米,則這個直徑是()A.216000米 B.0.00216米C.0.000216米 D.0.0000216米7.y=(m﹣1)x|m|+3m表示一次函數(shù),則m等于()A.1 B.﹣1 C.0或﹣1 D.1或﹣18.若分式有意義,則x的取值范圍是A.x>1 B.x<1 C.x≠1 D.x≠09.下列運算中,正確的是()A.(a3)2=a5 B.(﹣x)2÷x=﹣xC.a(chǎn)3(﹣a)2=﹣a5 D.(﹣2x2)3=﹣8x610.下列方程中,沒有實數(shù)根的是()A. B.C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,AB是圓O的直徑,AC是圓O的弦,AB=2,∠BAC=30°.在圖中畫出弦AD,使AD=1,則∠CAD的度數(shù)為_____°.12.分解因式:3ax2﹣3ay2=_____.13.如圖,直線y=k1x+b與雙曲線交于A、B兩點,其橫坐標分別為1和5,則不等式k1x<+b的解集是▲.14.如圖,已知△ABC中,AB=AC=5,BC=8,將△ABC沿射線BC方向平移m個單位得到△DEF,頂點A,B,C分別與D,E,F(xiàn)對應(yīng),若以A,D,E為頂點的三角形是等腰三角形,且AE為腰,則m的值是______.15.寫出經(jīng)過點(0,0),(﹣2,0)的一個二次函數(shù)的解析式_____(寫一個即可).16.已知一次函數(shù)y=ax+b的圖象如圖所示,根據(jù)圖中信息請寫出不等式ax+b≥2的解集為___________.三、解答題(共8題,共72分)17.(8分)在一次數(shù)學(xué)活動課上,老師讓同學(xué)們到操場上測量旗桿的高度,然后回來交流各自的測量方法.小芳的測量方法是:拿一根高3.5米的竹竿直立在離旗桿27米的C處(如圖),然后沿BC方向走到D處,這時目測旗桿頂部A與竹竿頂部E恰好在同一直線上,又測得C、D兩點的距離為3米,小芳的目高為1.5米,這樣便可知道旗桿的高.你認為這種測量方法是否可行?請說明理由.18.(8分)定義:若四邊形中某個頂點與其它三個頂點的距離相等,則這個四邊形叫做等距四邊形,這個頂點叫做這個四邊形的等距點.(1)判斷:一個內(nèi)角為120°的菱形等距四邊形.(填“是”或“不是”)(2)如圖2,在5×5的網(wǎng)格圖中有A、B兩點,請在答題卷給出的兩個網(wǎng)格圖上各找出C、D兩個格點,使得以A、B、C、D為頂點的四邊形為互不全等的“等距四邊形”,畫出相應(yīng)的“等距四邊形”,并寫出該等距四邊形的端點均為非等距點的對角線長.端點均為非等距點的對角線長為端點均為非等距點的對角線長為(3)如圖1,已知△ABE與△CDE都是等腰直角三角形,∠AEB=∠DEC=90°,連結(jié)AD,AC,BC,若四邊形ABCD是以A為等距點的等距四邊形,求∠BCD的度數(shù).19.(8分)如圖1,在Rt△ABC中,∠A=90°,AB=AC,點D,E分別在邊AB,AC上,AD=AE,連接DC,點M,P,N分別為DE,DC,BC的中點.(1)觀察猜想圖1中,線段PM與PN的數(shù)量關(guān)系是,位置關(guān)系是;(2)探究證明把△ADE繞點A逆時針方向旋轉(zhuǎn)到圖2的位置,連接MN,BD,CE,判斷△PMN的形狀,并說明理由;(3)拓展延伸把△ADE繞點A在平面內(nèi)自由旋轉(zhuǎn),若AD=4,AB=10,請直接寫出△PMN面積的最大值.20.(8分)如圖所示,平面直角坐標系中,O為坐標原點,二次函數(shù)的圖象與x軸交于、B兩點,與y軸交于點C;(1)求c與b的函數(shù)關(guān)系式;(2)點D為拋物線頂點,作拋物線對稱軸DE交x軸于點E,連接BC交DE于F,若AE=DF,求此二次函數(shù)解析式;(3)在(2)的條件下,點P為第四象限拋物線上一點,過P作DE的垂線交拋物線于點M,交DE于H,點Q為第三象限拋物線上一點,作于N,連接MN,且,當(dāng)時,連接PC,求的值.21.(8分)計算:.22.(10分)如圖①,已知拋物線y=ax2+bx+c的圖像經(jīng)過點A(0,3)、B(1,0),其對稱軸為直線l:x=2,過點A作AC∥x軸交拋物線于點C,∠AOB的平分線交線段AC于點E,點P是拋物線上的一個動點,設(shè)其橫坐標為m.(1)求拋物線的解析式;(2)若動點P在直線OE下方的拋物線上,連結(jié)PE、PO,當(dāng)m為何值時,四邊形AOPE面積最大,并求出其最大值;(3)如圖②,F(xiàn)是拋物線的對稱軸l上的一點,在拋物線上是否存在點P使△POF成為以點P為直角頂點的等腰直角三角形?若存在,直接寫出所有符合條件的點P的坐標;若不存在,請說明理由.23.(12分)如圖,△ABC是⊙O的內(nèi)接三角形,點D在上,點E在弦AB上(E不與A重合),且四邊形BDCE為菱形.(1)求證:AC=CE;(2)求證:BC2﹣AC2=AB?AC;(1)已知⊙O的半徑為1.①若=,求BC的長;②當(dāng)為何值時,AB?AC的值最大?24.如圖,輪船從點A處出發(fā),先航行至位于點A的南偏西15°且點A相距100km的點B處,再航行至位于點A的南偏東75°且與點B相距200km的點C處.(1)求點C與點A的距離(精確到1km);(2)確定點C相對于點A的方向.(參考數(shù)據(jù):2≈1.414
參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解題分析】解:如圖取CD的中點F,連接BF延長BF交AD的延長線于G,作FH⊥AB于H,EK⊥AB于K.作BT⊥AD于T.∵BC∥AG,∴∠BCF=∠FDG,∵∠BFC=∠DFG,F(xiàn)C=DF,∴△BCF≌△GDF,∴BC=DG,BF=FG,∵AB=BC+AD,AG=AD+DG=AD+BC,∴AB=AG,∵BF=FG,∴BF⊥BG,∠ABF=∠G=∠CBF,∵FH⊥BA,F(xiàn)C⊥BC,∴FH=FC,易證△FBC≌△FBH,△FAH≌△FAD,∴BC=BH,AD=AB,由題意AD=DC=4,設(shè)BC=TD=BH=x,在Rt△ABT中,∵AB2=BT2+AT2,∴(x+4)2=42+(4﹣x)2,∴x=1,∴BC=BH=TD=1,AB=5,設(shè)AK=EK=y,DE=z,∵AE2=AK2+EK2=AD2+DE2,BE2=BK2+KE2=BC2+EC2,∴42+z2=y2①,(5﹣y)2+y2=12+(4﹣z)2②,由①②可得y=207,∴S△ABE=12×5×207點睛:本題考查直角梯形的性質(zhì)、全等三角形的判定和性質(zhì)、角平分線的性質(zhì)定理、勾股定理、二元二次方程組等知識,解題的關(guān)鍵是學(xué)會添加常用輔助線,學(xué)會利用參數(shù),構(gòu)建方程解決問題,屬于中考壓軸題.2、B【解題分析】設(shè)多邊形的邊數(shù)為n,則有(n-2)×180°=n×150°,解得:n=12,故選B.3、B【解題分析】
根據(jù)題意求出AB的值,由D是AB中點求出CD的值,再由題意可得出EF是△ACD的中位線即可求出.【題目詳解】∵∠ACB=90°,∠A=30°,∴BC=12∵BC=2,∴AB=2BC=2×2=4,∵D是AB的中點,∴CD=12AB=12∵E,F分別為AC,AD的中點,∴EF是△ACD的中位線.∴EF=12CD=12故答案選B.【題目點撥】本題考查的知識點是三角形中位線定理,解題的關(guān)鍵是熟練的掌握三角形中位線定理.4、D【解題分析】
根據(jù)平行線的性質(zhì)以及角平分線的定義,即可得到正確的結(jié)論.【題目詳解】解:,故A選項正確;又故B選項正確;平分,,故C選項正確;,故選項錯誤;故選.【題目點撥】本題主要考查了平行線的性質(zhì),解題時注意:兩直線平行,同位角相等;兩直線平行,內(nèi)錯角相等.5、A【解題分析】
根據(jù)旋轉(zhuǎn)的性質(zhì)可得AC=AC,∠BAC=∠BAC',再根據(jù)兩直線平行,內(nèi)錯角相等求出∠ACC=∠CAB,然后利用等腰三角形兩底角相等求出∠CAC,再求出∠BAB=∠CAC,從而得解【題目詳解】∵CC′∥AB,∠CAB=75°,∴∠C′CA=∠CAB=75°,又∵C、C′為對應(yīng)點,點A為旋轉(zhuǎn)中心,∴AC=AC′,即△ACC′為等腰三角形,∴∠CAC′=180°﹣2∠C′CA=30°.故選A.【題目點撥】此題考查等腰三角形的性質(zhì),旋轉(zhuǎn)的性質(zhì)和平行線的性質(zhì),運用好旋轉(zhuǎn)的性質(zhì)是解題關(guān)鍵6、B【解題分析】
絕對值小于1的負數(shù)也可以利用科學(xué)記數(shù)法表示,一般形式為a×10﹣n,與較大數(shù)的科學(xué)記數(shù)法不同的是其所使用的是負指數(shù)冪,指數(shù)由原數(shù)左邊起第一個不為零的數(shù)字前面的0的個數(shù)所決定.【題目詳解】2.16×10﹣3米=0.00216米.故選B.【題目點撥】考查了用科學(xué)記數(shù)法表示較小的數(shù),一般形式為a×10﹣n,其中1≤|a|<10,n為由原數(shù)左邊起第一個不為零的數(shù)字前面的0的個數(shù)所決定.7、B【解題分析】由一次函數(shù)的定義知,|m|=1且m-1≠0,所以m=-1,故選B.8、C【解題分析】
分式分母不為0,所以,解得.故選:C.9、D【解題分析】
根據(jù)同底數(shù)冪的除法、乘法的運算方法,冪的乘方與積的乘方的運算方法,以及單項式乘單項式的方法,逐項判定即可.【題目詳解】∵(a3)2=a6,∴選項A不符合題意;∵(-x)2÷x=x,∴選項B不符合題意;∵a3(-a)2=a5,∴選項C不符合題意;∵(-2x2)3=-8x6,∴選項D符合題意.故選D.【題目點撥】此題主要考查了同底數(shù)冪的除法、乘法的運算方法,冪的乘方與積的乘方的運算方法,以及單項式乘單項式的方法,要熟練掌握.10、B【解題分析】
分別計算四個方程的判別式的值,然后根據(jù)判別式的意義確定正確選項.【題目詳解】解:A、△=(-2)2-4×(-3)=16>0,方程有兩個不相等的兩個實數(shù)根,所以A選項錯誤;
B、△=(-2)2-4×3=-8<0,方程沒有實數(shù)根,所以B選項正確;
C、△=(-2)2-4×1=0,方程有兩個相等的兩個實數(shù)根,所以C選項錯誤;
D、△=(-2)2-4×(-1)=8>0,方程有兩個不相等的兩個實數(shù)根,所以D選項錯誤.
故選:B.【題目點撥】本題考查根的判別式:一元二次方程ax2+bx+c=0(a≠0)的根與△=b2-4ac有如下關(guān)系:當(dāng)△>0根時,方程有兩個不相等的兩個實數(shù)根;當(dāng)△=0時,方程有兩個相等的兩個實數(shù)根;當(dāng)△<0時,方程無實數(shù)根.二、填空題(本大題共6個小題,每小題3分,共18分)11、30或1.【解題分析】
根據(jù)題意作圖,由AB是圓O的直徑,可得∠ADB=∠AD′B=1°,繼而可求得∠DAB的度數(shù),則可求得答案.【題目詳解】解:如圖,∵AB是圓O的直徑,∴∠ADB=∠AD′B=1°,∵AD=AD′=1,AB=2,∴cos∠DAB=cosD′AB=,∴∠DAB=∠D′AB=60°,∵∠CAB=30°,∴∠CAD=30°,∠CAD′=1°.∴∠CAD的度數(shù)為:30°或1°.故答案為30或1.【題目點撥】本題考查圓周角定理;含30度角的直角三角形.12、3a(x+y)(x-y)【解題分析】
解:3ax2-3ay2=3a(x2-y2)=3a(x+y)(x-y).【題目點撥】本題考查提公因式法與公式法的綜合運用.13、-2<x<-1或x>1.【解題分析】不等式的圖象解法,平移的性質(zhì),反比例函數(shù)與一次函數(shù)的交點問題,對稱的性質(zhì).不等式k1x<+b的解集即k1x-b<的解集,根據(jù)不等式與直線和雙曲線解析式的關(guān)系,可以理解為直線y=k1x-b在雙曲線下方的自變量x的取值范圍即可.而直線y=k1x-b的圖象可以由y=k1x+b向下平移2b個單位得到,如圖所示.根據(jù)函數(shù)圖象的對稱性可得:直線y=k1x-b和y=k1x+b與雙曲線的交點坐標關(guān)于原點對稱.由關(guān)于原點對稱的坐標點性質(zhì),直線y=k1x-b圖象與雙曲線圖象交點A′、B′的橫坐標為A、B兩點橫坐標的相反數(shù),即為-1,-2.∴由圖知,當(dāng)-2<x<-1或x>1時,直線y=k1x-b圖象在雙曲線圖象下方.∴不等式k1x<+b的解集是-2<x<-1或x>1.14、或5或1.【解題分析】
根據(jù)以點A,D,E為頂點的三角形是等腰三角形分類討論即可.【題目詳解】解:如圖(1)當(dāng)在△ADE中,DE=5,當(dāng)AD=DE=5時為等腰三角形,此時m=5.(2)又AC=5,當(dāng)平移m個單位使得E、C點重合,此時AE=ED=5,平移的長度m=BC=1,(3)可以AE、AD為腰使ADE為等腰三角形,設(shè)平移了m個單位:則AN=3,AC=,AD=m,得:,得m=,綜上所述:m為或5或1,所以答案:或5或1.【題目點撥】本題主要考查等腰三角形的性質(zhì),注意分類討論的完整性.15、y=x2+2x(答案不唯一).【解題分析】
設(shè)此二次函數(shù)的解析式為y=ax(x+2),令a=1即可.【題目詳解】∵拋物線過點(0,0),(﹣2,0),∴可設(shè)此二次函數(shù)的解析式為y=ax(x+2),把a=1代入,得y=x2+2x.故答案為y=x2+2x(答案不唯一).【題目點撥】本題考查的是待定系數(shù)法求二次函數(shù)解析式,此題屬開放性題目,答案不唯一.16、x≥1.【解題分析】試題分析:根據(jù)題意得當(dāng)x≥1時,ax+b≥2,即不等式ax+b≥2的解集為x≥1.故答案為x≥1.考點:一次函數(shù)與一元一次不等式.三、解答題(共8題,共72分)17、這種測量方法可行,旗桿的高為21.1米.【解題分析】分析:根據(jù)已知得出過F作FG⊥AB于G,交CE于H,利用相似三角形的判定得出△AGF∽△EHF,再利用相似三角形的性質(zhì)得出即可.詳解:這種測量方法可行.理由如下:設(shè)旗桿高AB=x.過F作FG⊥AB于G,交CE于H(如圖).所以△AGF∽△EHF.因為FD=1.1,GF=27+3=30,HF=3,所以EH=3.1﹣1.1=2,AG=x﹣1.1.由△AGF∽△EHF,得,即,所以x﹣1.1=20,解得x=21.1(米)答:旗桿的高為21.1米.點睛:此題主要考查了相似三角形的判定與性質(zhì),根據(jù)已知得出△AGF∽△EHF是解題關(guān)鍵.18、(1)是;(2)見解析;(3)150°.【解題分析】
(1)由菱形的性質(zhì)和等邊三角形的判定與性質(zhì)即可得出結(jié)論;(2)根據(jù)題意畫出圖形,由勾股定理即可得出答案;(3)由SAS證明△AEC≌△BED,得出AC=BD,由等距四邊形的定義得出AD=AB=AC,證出AD=AB=BD,△ABD是等邊三角形,得出∠DAB=60°,由SSS證明△AED≌△AEC,得出∠CAE=∠DAE=15°,求出∠DAC=∠CAE+∠DAE=30°,∠BAC=∠BAE﹣∠CAE=30°,由等腰三角形的性質(zhì)和三角形內(nèi)角和定理求出∠ACB和∠ACD的度數(shù),即可得出答案.【題目詳解】解:(1)一個內(nèi)角為120°的菱形是等距四邊形;故答案為是;(2)如圖2,圖3所示:在圖2中,由勾股定理得:在圖3中,由勾股定理得:故答案為(3)解:連接BD.如圖1所示:∵△ABE與△CDE都是等腰直角三角形,∴DE=EC,AE=EB,∠DEC+∠BEC=∠AEB+∠BEC,即∠AEC=∠DEB,在△AEC和△BED中,,∴△AEC≌△BED(SAS),∴AC=BD,∵四邊形ABCD是以A為等距點的等距四邊形,∴AD=AB=AC,∴AD=AB=BD,∴△ABD是等邊三角形,∴∠DAB=60°,∴∠DAE=∠DAB﹣∠EAB=60°﹣45°=15°,在△AED和△AEC中,∴△AED≌△AEC(SSS),∴∠CAE=∠DAE=15°,∴∠DAC=∠CAE+∠DAE=30°,∠BAC=∠BAE﹣∠CAE=30°,∵AB=AC,AC=AD,∴∴∠BCD=∠ACB+∠ACD=75°+75°=150°.【題目點撥】本題是四邊形綜合題目,考查了等距四邊形的判定與性質(zhì)、菱形的性質(zhì)、等邊三角形的判定與性質(zhì)、勾股定理、全等三角形的判定與性質(zhì)、等腰三角形的性質(zhì)、三角形內(nèi)角和定理等知識;本題綜合性強,有一定難度,證明三角形全等是解決問題的關(guān)鍵.19、(1)PM=PN,PM⊥PN;(2)△PMN是等腰直角三角形,理由詳見解析;(3).【解題分析】
(1)利用三角形的中位線得出PM=CE,PN=BD,進而判斷出BD=CE,即可得出結(jié)論,再利用三角形的中位線得出PM∥CE得出∠DPM=∠DCA,最后用互余即可得出結(jié)論;(2)先判斷出△ABD≌△ACE,得出BD=CE,同(1)的方法得出PM=BD,PN=BD,即可得出PM=PN,同(1)的方法即可得出結(jié)論;(3)方法1、先判斷出MN最大時,△PMN的面積最大,進而求出AN,AM,即可得出MN最大=AM+AN,最后用面積公式即可得出結(jié)論.方法2、先判斷出BD最大時,△PMN的面積最大,而BD最大是AB+AD=14,即可.【題目詳解】解:(1)∵點P,N是BC,CD的中點,∴PN∥BD,PN=BD,∵點P,M是CD,DE的中點,∴PM∥CE,PM=CE,∵AB=AC,AD=AE,∴BD=CE,∴PM=PN,∵PN∥BD,∴∠DPN=∠ADC,∵PM∥CE,∴∠DPM=∠DCA,∵∠BAC=90°,∴∠ADC+∠ACD=90°,∴∠MPN=∠DPM+∠DPN=∠DCA+∠ADC=90°,∴PM⊥PN,故答案為:PM=PN,PM⊥PN,(2)由旋轉(zhuǎn)知,∠BAD=∠CAE,∵AB=AC,AD=AE,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,BD=CE,同(1)的方法,利用三角形的中位線得,PN=BD,PM=CE,∴PM=PN,∴△PMN是等腰三角形,同(1)的方法得,PM∥CE,∴∠DPM=∠DCE,同(1)的方法得,PN∥BD,∴∠PNC=∠DBC,∵∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC=∠BCE+∠DBC=∠ACB+∠ACE+∠DBC=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,∵∠BAC=90°,∴∠ACB+∠ABC=90°,∴∠MPN=90°,∴△PMN是等腰直角三角形,(3)方法1、如圖2,同(2)的方法得,△PMN是等腰直角三角形,∴MN最大時,△PMN的面積最大,∴DE∥BC且DE在頂點A上面,∴MN最大=AM+AN,連接AM,AN,在△ADE中,AD=AE=4,∠DAE=90°,∴AM=2,在Rt△ABC中,AB=AC=10,AN=5,∴MN最大=2+5=7,∴S△PMN最大=PM2=×MN2=×(7)2=.方法2、由(2)知,△PMN是等腰直角三角形,PM=PN=BD,∴PM最大時,△PMN面積最大,∴點D在BA的延長線上,∴BD=AB+AD=14,∴PM=7,∴S△PMN最大=PM2=×72=【題目點撥】本題考查旋轉(zhuǎn)中的三角形,關(guān)鍵在于對三角形的所有知識點熟練掌握.20、(1);(2);(3)【解題分析】
(1)把A(-1,0)代入y=x2-bx+c,即可得到結(jié)論;(2)由(1)得,y=x2-bx-1-b,求得EO=,AE=+1=BE,于是得到OB=EO+BE=++1=b+1,當(dāng)x=0時,得到y(tǒng)=-b-1,根據(jù)等腰直角三角形的性質(zhì)得到D(,-b-2),將D(,-b-2)代入y=x2-bx-1-b解方程即可得到結(jié)論;(3)連接QM,DM,根據(jù)平行線的判定得到QN∥MH,根據(jù)平行線的性質(zhì)得到∠NMH=∠QNM,根據(jù)已知條件得到∠QMN=∠MQN,設(shè)QN=MN=t,求得Q(1-t,t2-4),得到DN=t2-4-(-4)=t2,同理,設(shè)MH=s,求得NH=t2-s2,根據(jù)勾股定理得到NH=1,根據(jù)三角函數(shù)的定義得到∠NMH=∠MDH推出∠NMD=90°;根據(jù)三角函數(shù)的定義列方程得到t1=,t2=-(舍去),求得MN=,根據(jù)三角函數(shù)的定義即可得到結(jié)論.【題目詳解】(1)把A(﹣1,0)代入,∴,∴;(2)由(1)得,,∵點D為拋物線頂點,∴,∴,當(dāng)時,,∴,∴,∴,∴,∴,∴,將代入得,,解得:,(舍去),∴二次函數(shù)解析式為:;(3)連接QM,DM,∵,,∴,∴,∴,∵,∴,∵,∴,設(shè),則,∴,同理,設(shè),則,∴,在中,,∴,∴,∴,∴,∵,∴,∵,∴,∴;∵,∴,,∵,∴,即,解得:,(舍去),∴,∵,∴,∴,當(dāng)時,,∴,∴,∴,∵,∴,∴,,,過P作于T,∴,∴,∴.【題目點撥】本題考查了待定系數(shù)法求二次函數(shù)的解析式,平行線的性質(zhì),三角函數(shù)的定義,勾股定理,正確的作出輔助線構(gòu)造直角三角形是解題的關(guān)鍵.21、【解題分析】
直接利用負整數(shù)指數(shù)冪的性質(zhì)以及絕對值的性質(zhì)、零指數(shù)冪的性質(zhì)以及特殊角的三角函數(shù)值化簡進而得出答案.【題目詳解】原式=9﹣2+1﹣2=.【題目點撥】本題考查了實數(shù)運算,正確化簡各數(shù)是解題的關(guān)鍵.22、(1)y=x2-4x+3.(2)當(dāng)m=時,四邊形AOPE面積最大,最大值為.(3)P點的坐標為:P1(,),P2(,),P3(,),P4(,).【解題分析】分析:(1)利用對稱性可得點D的坐標,利用交點式可得拋物線的解析式;(2)設(shè)P(m,m2-4m+3),根據(jù)OE的解析式表示點G的坐標,表示PG的長,根據(jù)面積和可得四邊形AOPE的面積,利用配方法可得其最大值;(3)存在四種情況:如圖3,作輔助線,構(gòu)建全等三角形,證明△OMP≌△PNF,根據(jù)OM=PN列方程可得點P的坐標;同理可得其他圖形中點P的坐標.詳解:(1)如圖1,設(shè)拋物線與x軸的另一個交點為D,由對稱性得:D(3,0),設(shè)拋物線的解析式為:y=a(x-1)(x-3),把A(0,3)代入得:3=3a,a=1,∴拋物線的解析式;y=x2-4x+3;(2)如圖2,設(shè)P(m,m2-4m+3),∵OE平分∠AOB,∠AOB=90°,∴∠AOE=45°,∴△AOE是等腰直角三角形,∴AE=OA=3,∴E(3,3),易得OE的解析式為:y=x,過P作PG∥y軸,交OE于點G,∴G(m,m),∴PG=m-(m2-4m+3)=-m2+5m-3,∴S四邊形AOPE=S△AOE+S△POE,=×3×3+PG?AE,=+×3×(-m2+5m-3),=-m2+m,=(m-)2+,∵-<0,∴當(dāng)m=時,S有最大值是;(3)如圖3,過P作MN⊥y軸,交y軸于M,交l于N,∵△OPF是等腰直角三角形,且OP=PF,易得△OMP≌△PNF,∴OM=PN,∵P(m,m2-4m+3),則-m2+4m-3=2-m,解得:m=或,∴P的坐標為(,)或(,);如圖4,過P作MN⊥x軸于N,過F作FM⊥MN于M,同理得△ONP≌△PMF,∴PN=FM,則-m2+4m-3=m-2,解得:x=或;P的坐標為(,)或(,);綜上所述,點P的坐標是:(,)或(,)或(,)或(,).點睛:本題屬于二次函數(shù)綜合題,主要考查了二次函數(shù)的綜合應(yīng)用,相似三角形的判定與性質(zhì)以及解一元二次方程的方法,解第(2)問時需要運用配方法,解第(3)問時需要運用分類討論思想和方程的思想解決問題.23、(1)證明見解析;(2)證明見解析;(1)①BC=4;②【解題分析】分析:(1)由菱形知∠D=∠BEC,由∠A+∠D=∠BEC+∠AEC=180°可得∠A=∠AEC,據(jù)此得證;(2)以點C為圓心,CE長為半徑作⊙C,與BC交于點F,于BC延長線交于點G,則CF=CG=AC=CE=CD,證△BEF∽△BGA得,即BF?BG=BE?AB,將BF=BC-CF=BC-AC、BG=BC+CG=BC+AC代入可得;(1)①設(shè)AB=5k、AC=1k,由BC2-AC2=AB?AC知BC=2k,連接ED交BC于點M,Rt△DMC中由DC=AC=1k、MC=BC=k求得DM==k,可知OM=OD-DM=1-k,在Rt△COM中,由OM2+MC2=OC2可得答案.②設(shè)OM=d,則MD=1-d,MC2=OC2-OM2=9-d2,繼而知BC2=(2MC)2=16-4d2、AC2=DC2=DM2+CM2=(1-d)2+9-d2,由(2)得AB?AC=BC2-AC2,據(jù)此得出關(guān)于d的二次函數(shù),利用二次函數(shù)的性質(zhì)可得答案.詳解:(1)∵四邊形EBDC為菱形,∴∠D=∠BEC,∵
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 小學(xué)五年級數(shù)學(xué)小數(shù)乘除法豎式計算練習(xí)題
- 土方分包合同范本-合同范本
- 《美容項目專業(yè)知識》課件
- 《醫(yī)院急診科的管理》課件
- 屆每日語文試題精練
- 更新采伐公路護路林許可申請表
- 《家用醫(yī)療用具使用》課件
- 金融產(chǎn)業(yè)電話理財顧問績效總結(jié)
- 快遞公司保安工作總結(jié)
- 醫(yī)療器械行業(yè)安全工作總結(jié)
- ASTM-A269-A269M無縫和焊接奧氏體不銹鋼管
- 中、高級鉗工訓(xùn)練圖紙
- 2024-2030年中國車載動態(tài)稱重行業(yè)投融資規(guī)模與發(fā)展態(tài)勢展望研究報告
- 乒乓球教案完整版本
- 2024年重慶公交車從業(yè)資格證考試題庫
- 銀行解押合同范本
- 2024-2030年中國紋身針行業(yè)市場發(fā)展趨勢與前景展望戰(zhàn)略分析報告
- 部編版道德與法治九年級上冊每課教學(xué)反思
- 2024云南保山電力股份限公司招聘(100人)(高頻重點提升專題訓(xùn)練)共500題附帶答案詳解
- 人教版(2024)七年級上冊英語 Unit 1 You and Me 語法知識點復(fù)習(xí)提綱與學(xué)情評估測試卷匯編(含答案)
- 六年級期末家長會課件下載
評論
0/150
提交評論