![河北省石家莊市欒城縣重點名校2024屆中考數學模擬預測題含解析_第1頁](http://file4.renrendoc.com/view10/M01/1D/26/wKhkGWVnsbKAdpGlAAHtUwCNdc8226.jpg)
![河北省石家莊市欒城縣重點名校2024屆中考數學模擬預測題含解析_第2頁](http://file4.renrendoc.com/view10/M01/1D/26/wKhkGWVnsbKAdpGlAAHtUwCNdc82262.jpg)
![河北省石家莊市欒城縣重點名校2024屆中考數學模擬預測題含解析_第3頁](http://file4.renrendoc.com/view10/M01/1D/26/wKhkGWVnsbKAdpGlAAHtUwCNdc82263.jpg)
![河北省石家莊市欒城縣重點名校2024屆中考數學模擬預測題含解析_第4頁](http://file4.renrendoc.com/view10/M01/1D/26/wKhkGWVnsbKAdpGlAAHtUwCNdc82264.jpg)
![河北省石家莊市欒城縣重點名校2024屆中考數學模擬預測題含解析_第5頁](http://file4.renrendoc.com/view10/M01/1D/26/wKhkGWVnsbKAdpGlAAHtUwCNdc82265.jpg)
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
河北省石家莊市欒城縣重點名校2024屆中考數學模擬預測題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖是某蓄水池的橫斷面示意圖,分為深水池和淺水池,如果向這個蓄水池以固定的流量注水,下面能大致表示水的最大深度與時間之間的關系的圖象是()A. B. C. D.2.如圖,直線a∥b,∠ABC的頂點B在直線a上,兩邊分別交b于A,C兩點,若∠ABC=90°,∠1=40°,則∠2的度數為()A.30° B.40° C.50° D.60°3.李老師為了了解學生暑期在家的閱讀情況,隨機調查了20名學生某一天的閱讀小時數,具體情況統(tǒng)計如下:閱讀時間(小時)22.533.54學生人數(名)12863則關于這20名學生閱讀小時數的說法正確的是()A.眾數是8 B.中位數是3C.平均數是3 D.方差是0.344.如圖,在Rt△ABC中,∠ACB=90°,AC=2,以點C為圓心,CB的長為半徑畫弧,與AB邊交于點D,將繞點D旋轉180°后點B與點A恰好重合,則圖中陰影部分的面積為()A. B. C. D.5.如圖,在△ABC中,點D在BC上,DE∥AC,DF∥AB,下列四個判斷中不正確的是()A.四邊形AEDF是平行四邊形B.若∠BAC=90°,則四邊形AEDF是矩形C.若AD平分∠BAC,則四邊形AEDF是矩形D.若AD⊥BC且AB=AC,則四邊形AEDF是菱形6.下列運算正確的是()A.2+a=3 B.=C. D.=7.甲、乙、丙三家超市為了促銷同一種定價為m元的商品,甲超市連續(xù)兩次降價20%;乙超市一次性降價40%;丙超市第一次降價30%,第二次降價10%,此時顧客要購買這種商品,最劃算的超市是()A.甲 B.乙 C.丙 D.都一樣8.如圖,C,B是線段AD上的兩點,若,,則AC與CD的關系為()A. B. C. D.不能確定9.下列圖形中,既是中心對稱圖形又是軸對稱圖形的是()A. B.C. D.10.反比例函數y=1-6txA.t<16B.t>16C.t≤1二、填空題(共7小題,每小題3分,滿分21分)11.中,,,高,則的周長為______。12.如圖,四邊形OABC是矩形,ADEF是正方形,點A、D在x軸的正半軸上,點C在y軸的正半軸上,點F在AB上,點B、E在反比例函數的圖像上,OA=1,OC=6,則正方形ADEF的邊長為.13.若a2+3=2b,則a3﹣2ab+3a=_____.14.如圖,在正方形網格中,線段A′B′可以看作是線段AB經過若干次圖形的變化(平移、旋轉、軸對稱)得到的,寫出一種由線段AB得到線段A′B′的過程______15.如圖,正方形ABCD中,AB=2,將線段CD繞點C順時針旋轉90°得到線段CE,線段BD繞點B順時針旋轉90°得到線段BF,連接BF,則圖中陰影部分的面積是_____.16.若兩個相似三角形的面積比為1∶4,則這兩個相似三角形的周長比是__________.17.如圖,在平行四邊形ABCD中,E為邊BC上一點,AC與DE相交于點F,若CE=2EB,S△AFD=9,則S△EFC等于_____.三、解答題(共7小題,滿分69分)18.(10分)如圖所示,拋物線y=x2+bx+c經過A、B兩點,A、B兩點的坐標分別為(﹣1,0)、(0,﹣3).求拋物線的函數解析式;點E為拋物線的頂點,點C為拋物線與x軸的另一交點,點D為y軸上一點,且DC=DE,求出點D的坐標;在第二問的條件下,在直線DE上存在點P,使得以C、D、P為頂點的三角形與△DOC相似,請你直接寫出所有滿足條件的點P的坐標.19.(5分)(1)計算:;(2)化簡,然后選一個合適的數代入求值.20.(8分)“C919”大型客機首飛成功,激發(fā)了同學們對航空科技的興趣,如圖是某校航模興趣小組獲得的一張數據不完整的航模飛機機翼圖紙,圖中AB∥CD,AM∥BN∥ED,AE⊥DE,請根據圖中數據,求出線段BE和CD的長.(sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,結果保留小數點后一位)21.(10分)如圖,已知在Rt△ABC中,∠ACB=90°,AC>BC,CD是Rt△ABC的高,E是AC的中點,ED的延長線與CB的延長線相交于點F.(1)求證:DF是BF和CF的比例中項;(2)在AB上取一點G,如果AE?AC=AG?AD,求證:EG?CF=ED?DF.22.(10分)“大美濕地,水韻鹽城”.某校數學興趣小組就“最想去的鹽城市旅游景點”隨機調查了本校部分學生,要求每位同學選擇且只能選擇一個最想去的景點,下面是根據調查結果進行數據整理后繪制出的不完整的統(tǒng)計圖:請根據圖中提供的信息,解答下列問題:(1)求被調查的學生總人數;(2)補全條形統(tǒng)計圖,并求扇形統(tǒng)計圖中表示“最想去景點D”的扇形圓心角的度數;(3)若該校共有800名學生,請估計“最想去景點B“的學生人數.23.(12分)在平面直角坐標系中,拋物線經過點A(-1,0)和點B(4,5).(1)求該拋物線的函數表達式.(2)求直線AB關于x軸對稱的直線的函數表達式.(3)點P是x軸上的動點,過點P作垂直于x軸的直線l,直線l與該拋物線交于點M,與直線AB交于點N.當PM<PN時,求點P的橫坐標的取值范圍.24.(14分)近幾年“霧霾”成為全社會關注的話題某校環(huán)保志愿者小組對該市2018年空氣質量進行調查,從全年365天中隨機抽查了50天的空氣質量指數(AQI),得到以下數據:43、62、80、78、46、78、23、59、32、78、86、125、98、116、86、69、28、43、58、87、75、116、178、146、57、26、43、59、77、103、126、159、201、289、315、253、196、102、93、72、56、43、39、44、47、34、31、29、43、1.(1)請你完成如下的統(tǒng)計表;AQI0~5051~100101~150151~200201~250300以上質量等級A(優(yōu))B(良)C(輕度污染)D(中度污染)E(重度污染)F(嚴重污染)天數(2)請你根據題中所給信息繪制該市2018年空氣質量等級條形統(tǒng)計圖;(3)請你估計該市全年空氣質量等級為“重度污染”和“嚴重污染”的天數.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解題分析】
首先看圖可知,蓄水池的下部分比上部分的體積小,故h與t的關系變?yōu)橄瓤旌舐绢}目詳解】根據題意和圖形的形狀,可知水的最大深度h與時間t之間的關系分為兩段,先快后慢。故選:C.【題目點撥】此題考查函數的圖象,解題關鍵在于觀察圖形2、C【解題分析】
依據平行線的性質,可得∠BAC的度數,再根據三角形內和定理,即可得到∠2的度數.【題目詳解】解:∵a∥b,∴∠1=∠BAC=40°,又∵∠ABC=90°,∴∠2=90°?40°=50°,故選C.【題目點撥】本題考查的是平行線的性質,用到的知識點為:兩直線平行,內錯角相等.3、B【解題分析】
A、根據眾數的定義找出出現次數最多的數;B、根據中位數的定義將這組數據從小到大重新排列,求出最中間的2個數的平均數,即可得出中位數;C、根據加權平均數公式代入計算可得;D、根據方差公式計算即可.【題目詳解】解:A、由統(tǒng)計表得:眾數為3,不是8,所以此選項不正確;B、隨機調查了20名學生,所以中位數是第10個和第11個學生的閱讀小時數,都是3,故中位數是3,所以此選項正確;C、平均數=,所以此選項不正確;D、S2=×[(2﹣3.35)2+2(2.5﹣3.35)2+8(3﹣3.35)2+6(3.5﹣3.35)2+3(4﹣3.35)2]==0.2825,所以此選項不正確;故選B.【題目點撥】本題考查方差;加權平均數;中位數;眾數.4、B【解題分析】
陰影部分的面積=三角形的面積-扇形的面積,根據面積公式計算即可.【題目詳解】解:由旋轉可知AD=BD,∵∠ACB=90°,AC=2,∴CD=BD,∵CB=CD,∴△BCD是等邊三角形,∴∠BCD=∠CBD=60°,∴BC=AC=2,∴陰影部分的面積=2×2÷2?=2?.故選:B.【題目點撥】本題考查了旋轉的性質與扇形面積的計算,解題的關鍵是熟練的掌握旋轉的性質與扇形面積的計算.5、C【解題分析】A選項,∵在△ABC中,點D在BC上,DE∥AC,DF∥AB,∴DE∥AF,DF∥AE,∴四邊形AEDF是平行四邊形;即A正確;B選項,∵四邊形AEDF是平行四邊形,∠BAC=90°,∴四邊形AEDF是矩形;即B正確;C選項,因為添加條件“AD平分∠BAC”結合四邊形AEDF是平行四邊形只能證明四邊形AEDF是菱形,而不能證明四邊形AEDF是矩形;所以C錯誤;D選項,因為由添加的條件“AB=AC,AD⊥BC”可證明AD平分∠BAC,從而可通過證∠EAD=∠CAD=∠EDA證得AE=DE,結合四邊形AEDF是平行四邊形即可得到四邊形AEDF是菱形,所以D正確.故選C.6、D【解題分析】
根據整式的混合運算計算得到結果,即可作出判斷.【題目詳解】A、2與a不是同類項,不能合并,不符合題意;B、=,不符合題意;C、原式=,不符合題意;D、=,符合題意,故選D.【題目點撥】此題考查了整式的混合運算,熟練掌握運算法則是解本題的關鍵.7、B【解題分析】
根據各超市降價的百分比分別計算出此商品降價后的價格,再進行比較即可得出結論.【題目詳解】解:降價后三家超市的售價是:甲為(1-20%)2m=0.64m,乙為(1-40%)m=0.6m,丙為(1-30%)(1-10%)m=0.63m,∵0.6m<0.63m<0.64m,∴此時顧客要購買這種商品最劃算應到的超市是乙.故選:B.【題目點撥】此題考查了列代數式,解題的關鍵是根據題目中的數量關系列出代數式,并對代數式比較大?。?、B【解題分析】
由AB=CD,可得AC=BD,又BC=2AC,所以BC=2BD,所以CD=3AC.【題目詳解】∵AB=CD,∴AC+BC=BC+BD,即AC=BD,又∵BC=2AC,∴BC=2BD,∴CD=3BD=3AC.故選B.【題目點撥】本題考查了線段長短的比較,在不同的情況下靈活選用它的不同表示方法,有利于解題的簡潔性.同時,靈活運用線段的和、差、倍轉化線段之間的數量關系是十分關鍵的一點.9、D【解題分析】
根據中心對稱圖形的定義旋轉180°后能夠與原圖形完全重合即是中心對稱圖形,以及軸對稱圖形的定義即可判斷出.【題目詳解】解:A.∵此圖形旋轉180°后不能與原圖形重合,∴此圖形不是中心對稱圖形,是軸對稱圖形,故此選項錯誤;B.∵此圖形旋轉180°后能與原圖形重合,∴此圖形是中心對稱圖形,不是軸對稱圖形,故此選項錯誤;C.∵此圖形旋轉180°后不能與原圖形重合,∴此圖形不是中心對稱圖形,是軸對稱圖形,故此選項錯誤;D.∵此圖形旋轉180°后能與原圖形重合,∴此圖形是中心對稱圖形,也是軸對稱圖形,故此選項正確.故選:D.【題目點撥】本題考查了中心對稱圖形與軸對稱圖形的定義,解題的關鍵是熟練的掌握中心對稱圖形與軸對稱圖形的定義.10、B【解題分析】
將一次函數解析式代入到反比例函數解析式中,整理得出x2﹣2x+1﹣6t=0,又因兩函數圖象有兩個交點,且兩交點橫坐標的積為負數,根據根的判別式以及根與系數的關系可求解.【題目詳解】由題意可得:﹣x+2=1-6tx所以x2﹣2x+1﹣6t=0,∵兩函數圖象有兩個交點,且兩交點橫坐標的積為負數,∴(-解不等式組,得t>16故選:B.點睛:此題主要考查了反比例函數與一次函數的交點問題,關鍵是利用兩個函數的解析式構成方程,再利用一元二次方程的根與系數的關系求解.二、填空題(共7小題,每小題3分,滿分21分)11、32或42【解題分析】
根據題意,分兩種情況討論:①若∠ACB是銳角,②若∠ACB是鈍角,分別畫出圖形,利用勾股定理,即可求解.【題目詳解】分兩種情況討論:①若∠ACB是銳角,如圖1,∵,,高,∴在Rt?ABD中,,即:,同理:,∴的周長=9+5+15+13=42,②若∠ACB是鈍角,如圖2,∵,,高,∴在Rt?ABD中,,即:,同理:,∴的周長=9-5+15+13=32,故答案是:32或42.【題目點撥】本題主要考查勾股定理,根據題意,畫出圖形,分類進行計算,是解題的關鍵.12、2【解題分析】試題分析:由OA=1,OC=6,可得矩形OABC的面積為6;再根據反比例函數系數k的幾何意義,可知k=6,∴反比例函數的解析式為;設正方形ADEF的邊長為a,則點E的坐標為(a+1,a),∵點E在拋物線上,∴,整理得,解得或(舍去),故正方形ADEF的邊長是2.考點:反比例函數系數k的幾何意義.13、1【解題分析】
利用提公因式法將多項式分解為a(a2+3)-2ab,將a2+3=2b代入可求出其值.【題目詳解】解:∵a2+3=2b,∴a3-2ab+3a=a(a2+3)-2ab=2ab-2ab=1,故答案為1.【題目點撥】本題考查了因式分解的應用,利用提公因式法將多項式分解是本題的關鍵.14、將線段AB繞點B逆時針旋轉90°,在向右平移2個單位長度【解題分析】
根據圖形的旋轉和平移性質即可解題.【題目詳解】解:將線段AB繞點B逆時針旋轉90°,在向右平移2個單位長度即可得到A′B′、【題目點撥】本題考查了旋轉和平移,屬于簡單題,熟悉旋轉和平移的概念是解題關鍵.15、6﹣π【解題分析】過F作FM⊥BE于M,則∠FME=∠FMB=90°,
∵四邊形ABCD是正方形,AB=2,
∴∠DCB=90°,DC=BC=AB=2,∠DCB=45°,
由勾股定理得:BD=2,
∵將線段CD繞點C順時針旋轉90°得到線段CE,線段BD繞點B順時針旋轉90°得到線段BF,
∴∠DCE=90°,BF=BD=2,∠FBE=90°-45°=45°,
∴BM=FM=2,ME=2,
∴陰影部分的面積=×2×2+×4×2+-=6-π.
故答案為:6-π.點睛:本題考查了旋轉的性質,解直角三角形,正方形的性質,扇形的面積計算等知識點,能求出各個部分的面積是解此題的關鍵.16、【解題分析】試題分析:∵兩個相似三角形的面積比為1:4,∴這兩個相似三角形的相似比為1:1,∴這兩個相似三角形的周長比是1:1,故答案為1:1.考點:相似三角形的性質.17、1【解題分析】
由于四邊形ABCD是平行四邊形,所以得到BC∥AD、BC=AD,而CE=2EB,由此即可得到△AFD∽△CFE,它們的相似比為3:2,最后利用相似三角形的性質即可求解.【題目詳解】解:∵四邊形ABCD是平行四邊形,∴BC∥AD、BC=AD,而CE=2EB,∴△AFD∽△CFE,且它們的相似比為3:2,∴S△AFD:S△EFC=()2,而S△AFD=9,∴S△EFC=1.故答案為1.【題目點撥】此題主要考查了相似三角形的判定與性質,解題首先利用平行四邊形的構造相似三角形的相似條件,然后利用其性質即可求解.三、解答題(共7小題,滿分69分)18、(1)y=x2﹣2x﹣3;(2)D(0,﹣1);(3)P點坐標(﹣,0)、(,﹣2)、(﹣3,8)、(3,﹣10).【解題分析】
(1)將A,B兩點坐標代入解析式,求出b,c值,即可得到拋物線解析式;(2)先根據解析式求出C點坐標,及頂點E的坐標,設點D的坐標為(0,m),作EF⊥y軸于點F,利用勾股定理表示出DC,DE的長.再建立相等關系式求出m值,進而求出D點坐標;(3)先根據邊角邊證明△COD≌△DFE,得出∠CDE=90°,即CD⊥DE,然后當以C、D、P為頂點的三角形與△DOC相似時,根據對應邊不同進行分類討論:①當OC與CD是對應邊時,有比例式,能求出DP的值,又因為DE=DC,所以過點P作PG⊥y軸于點G,利用平行線分線段成比例定理即可求出DG,PG的長度,根據點P在點D的左邊和右邊,得到符合條件的兩個P點坐標;②當OC與DP是對應邊時,有比例式,易求出DP,仍過點P作PG⊥y軸于點G,利用比例式求出DG,PG的長度,然后根據點P在點D的左邊和右邊,得到符合條件的兩個P點坐標;這樣,直線DE上根據對應邊不同,點P所在位置不同,就得到了符合條件的4個P點坐標.【題目詳解】解:(1)∵拋物線y=x2+bx+c經過A(﹣1,0)、B(0,﹣3),∴,解得,故拋物線的函數解析式為y=x2﹣2x﹣3;(2)令x2﹣2x﹣3=0,解得x1=﹣1,x2=3,則點C的坐標為(3,0),∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴點E坐標為(1,﹣4),設點D的坐標為(0,m),作EF⊥y軸于點F(如下圖),∵DC2=OD2+OC2=m2+32,DE2=DF2+EF2=(m+4)2+12,∵DC=DE,∴m2+9=m2+8m+16+1,解得m=﹣1,∴點D的坐標為(0,﹣1);(3)∵點C(3,0),D(0,﹣1),E(1,﹣4),∴CO=DF=3,DO=EF=1,根據勾股定理,CD===,在△COD和△DFE中,∵,∴△COD≌△DFE(SAS),∴∠EDF=∠DCO,又∵∠DCO+∠CDO=90°,∴∠EDF+∠CDO=90°,∴∠CDE=180°﹣90°=90°,∴CD⊥DE,①當OC與CD是對應邊時,∵△DOC∽△PDC,∴,即=,解得DP=,過點P作PG⊥y軸于點G,則,即,解得DG=1,PG=,當點P在點D的左邊時,OG=DG﹣DO=1﹣1=0,所以點P(﹣,0),當點P在點D的右邊時,OG=DO+DG=1+1=2,所以,點P(,﹣2);②當OC與DP是對應邊時,∵△DOC∽△CDP,∴,即=,解得DP=3,過點P作PG⊥y軸于點G,則,即,解得DG=9,PG=3,當點P在點D的左邊時,OG=DG﹣OD=9﹣1=8,所以,點P的坐標是(﹣3,8),當點P在點D的右邊時,OG=OD+DG=1+9=10,所以,點P的坐標是(3,﹣10),綜上所述,在直線DE上存在點P,使得以C、D、P為頂點的三角形與△DOC相似,滿足條件的點P共有4個,其坐標分別為(﹣,0)、(,﹣2)、(﹣3,8)、(3,﹣10).考點:1.相似三角形的判定與性質;2.二次函數動點問題;3.一次函數與二次函數綜合題.19、(1)0;(2),答案不唯一,只要x≠±1,0即可,當x=10時,.【解題分析】
(1)根據有理數的乘方法則、零次冪的性質、特殊角的三角函數值計算即可;(2)先把括號內通分,再把除法運算化為乘法運算,然后約分,再根據分式有意義的條件把x=10代入計算即可.【題目詳解】解:(1)原式==1﹣3+2+1﹣1=0;(2)原式==由題意可知,x≠1∴當x=10時,原式==.【題目點撥】本題考查實數的運算;零指數冪;負整數指數冪;特殊角的三角函數值;分式的化簡求值,掌握計算法則正確計算是本題的解題關鍵.20、線段BE的長約等于18.8cm,線段CD的長約等于10.8cm.【解題分析】試題分析:在Rt△BED中可先求得BE的長,過C作CF⊥AE于點F,則可求得AF的長,從而可求得EF的長,即可求得CD的長.試題解析:∵BN∥ED,∴∠NBD=∠BDE=37°,∵AE⊥DE,∴∠E=90°,∴BE=DE?tan∠BDE≈18.75(cm),如圖,過C作AE的垂線,垂足為F,∵∠FCA=∠CAM=45°,∴AF=FC=25cm,∵CD∥AE,∴四邊形CDEF為矩形,∴CD=EF,∵AE=AB+EB=35.75(cm),∴CD=EF=AE-AF≈10.8(cm),答:線段BE的長約等于18.8cm,線段CD的長約等于10.8cm.【題目點撥】本題考查了解直角三角形的應用,正確地添加輔助線構造直角三角形是解題的關鍵.21、證明見解析【解題分析】試題分析:(1)根據已知求得∠BDF=∠BCD,再根據∠BFD=∠DFC,證明△BFD∽△DFC,從而得BF:DF=DF:FC,進行變形即得;(2)由已知證明△AEG∽△ADC,得到∠AEG=∠ADC=90°,從而得EG∥BC,繼而得,由(1)可得,從而得,問題得證.試題解析:(1)∵∠ACB=90°,∴∠BCD+∠ACD=90°,∵CD是Rt△ABC的高,∴∠ADC=∠BDC=90°,∴∠A+∠ACD=90°,∴∠A=∠BCD,∵E是AC的中點,∴DE=AE=CE,∴∠A=∠EDA,∠ACD=∠EDC,∵∠EDC+∠BDF=180°-∠BDC=90°,∴∠BDF=∠BCD,又∵∠BFD=∠DFC,∴△BFD∽△DFC,∴BF:DF=DF:FC,∴DF2=BF·CF;(2)∵AE·AC=ED·DF,∴,又∵∠A=∠A,∴△AEG∽△ADC,∴∠AEG=∠ADC=90°,∴EG∥BC,∴,由(1)知△DFD∽△DFC,∴,∴,∴EG·CF=ED·DF.22、(1)40;(2)72;(3)1.【解題分析】
(1)用最想去A景點的人數除以它所占的百分比即可得到被調查的學生總人數;(2)先計算出最想去D景點的人數,再補全條形統(tǒng)計圖,然后用360°乘以最想去D景點的人數所占的百分比即可得到扇形統(tǒng)計圖中表示“最想去景點D”的扇形圓心角的度數;(3)用800乘以樣本中最想去A景點的人數所占的百分比即可.【題目詳解】(1)被調查的學生總人數為8÷20%=40(人);(2)最想去D
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年事業(yè)單位員工年度考核表個人總結(三篇)
- 2025年個人店面承包合同模板(三篇)
- 2025年中等職業(yè)學校教研教改工作總結(六篇)
- 2025年事業(yè)單位工作人員年度考核總結參考(3篇)
- 2025年人事考核工作總結范例(三篇)
- 2025年中學全學年教務處工作總結(四篇)
- 2025年產品加工合同經典版(2篇)
- 2025年中學學校期末工作總結模版(三篇)
- LY/T 3400-2024荒漠與荒漠化防治術語
- 買賣鐵礦石合同
- 河北省邯鄲市永年區(qū)2024-2025學年九年級上學期期末考試化學試卷(含答案)
- 油漆工培訓試題
- 2024年四川綿陽初中學業(yè)水平考試英語試卷真題(含答案詳解)
- 2025年閥門和龍頭項目發(fā)展計劃
- 2025初級會計理論考試100題及解析
- 三兄弟分田地宅基地協議書范文
- 廣東省會計師事務所審計服務收費標準表
- 參觀河南省博物院
- 中考數學計算題練習100道(2024年中考真題)
- 婚禮主持詞:農村婚禮主持詞
- 匯川變頻器MD張力開環(huán)調試
評論
0/150
提交評論