![現(xiàn)代數(shù)字信號(hào)處理AdvancedDigitalSignalProcessingch4pse_第1頁(yè)](http://file4.renrendoc.com/view10/M03/1C/2B/wKhkGWVo0UWAbhjJAADBXgE2pp0851.jpg)
![現(xiàn)代數(shù)字信號(hào)處理AdvancedDigitalSignalProcessingch4pse_第2頁(yè)](http://file4.renrendoc.com/view10/M03/1C/2B/wKhkGWVo0UWAbhjJAADBXgE2pp08512.jpg)
![現(xiàn)代數(shù)字信號(hào)處理AdvancedDigitalSignalProcessingch4pse_第3頁(yè)](http://file4.renrendoc.com/view10/M03/1C/2B/wKhkGWVo0UWAbhjJAADBXgE2pp08513.jpg)
![現(xiàn)代數(shù)字信號(hào)處理AdvancedDigitalSignalProcessingch4pse_第4頁(yè)](http://file4.renrendoc.com/view10/M03/1C/2B/wKhkGWVo0UWAbhjJAADBXgE2pp08514.jpg)
![現(xiàn)代數(shù)字信號(hào)處理AdvancedDigitalSignalProcessingch4pse_第5頁(yè)](http://file4.renrendoc.com/view10/M03/1C/2B/wKhkGWVo0UWAbhjJAADBXgE2pp08515.jpg)
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
Advanced
Digital
SignalProcessing(Modern
Digital
Signal
Processing)Chapter
4
Power
SpectrumEstimationAmplitude
Spectrum
&
Power
SpectrumAmplitude
spectrum
density
■Signal
amplitudeat
each
frequencyFinite-energy
Fourierdeterministic
signal
transform4.1
IntroductionAmplitudespectrum(including
phase)Power
spectrum
density
(PSD)Real
stationaryrandom
signalFouriertransformPower
spectrum(without
phase)AutocorrelationfunctionSignal
powerat
eachfrequencyWiener-Khintchine
TheoremFourier
transformInverse
Fourier
transf
PSD
of
Ergodic
Stationary
RandomSignalPower
Spectrum
Estimation
(PSE)Estimating
the
PSD
of
real
ergodicstationary
random
signal
with
finiteobservations
(sample)Classical
&
Modern
PSE
MethodsClassical
(linear)
PSEPSE
based
on
Fourier
transform,
non-parametric
model
methodModern
(nonlinear)
PSEPSE
based
on
signal
model
(parametricmodel
method)Desirable
properties
of
PSEUnbiasedConsistentEfficientHigh
frequency
resolutionNarrow
main
lobe,
low
side
lobeSmall
sample
lengthBlackman-Tukey
(BT)
Method
for
PSE4.2
Classical
PSEThe
Fourier
transform
of
the
biasedestimation
of
autocorrelation
function.Periodogram
Method
for
PSEPeriodogramThe
average
energy
spectrum
of
finite
lengthsample
is
an
estimation
of
PSDFFT
The
periodogram
PSE
is
an
asymptoticallyunbiased
but
not
a
consistent
estimationBartlet
windowLimitations
of
Classical
PSELow
frequency
resolutionCaused
by
the
effects
of
data
window:The
degradation
in
resolution
by
mainlobe;The
power
leakage
by
side
lobe
(inter-spectrum
interference).Inconsistent
estimationThe
PSE
of
Harmonic
Process
With
PeriodogramThe
PSE
of
White
Noise
With
PeriodogramModifications
of
Classical
PSEAchieving
low
variance
at
the
expense
ofbias
and
frequency
resolutionAveraging
Periodogram
(Bartlet
method)N:
data
length,
N=L×MM
M
M
MPeriodogramPeriodogramPeriodogramPeriodogramAveragingAveraging
PeriodogramIts
bias
is
larger
than
the
periodogram
while
its
variancthan
the
Periodogram:Modified
PeriodogramThe
window
will
smooth
the
PSD
acquired
by
periodogram.
Ifunction
is
similar
to
a
lowpass
filter.
Averaging
modified
periodogram
(Welchmethod)N:
data
length,
N=L×MM
M
M
MModifiedPeriodogramAveragingAveraging
PeriodogramModifiedPeriodogramModifiedPeriodogramModifiedPeriodogramThe
PSE
of
Harmonic
Process
With
WelchThe
sequence
is
divided
into
eight
sections
with
50%overlap,
each
section
is
windowed
with
a
HammingwindowThe
PSE
of
White
Noise
With
WelchThe
sequence
is
divided
into
eight
sections
with
50%overlap,
each
section
is
windowed
with
a
Hammingwindow4.3
Parameter
Model
Methodsfor
PSEBasic
PrinciplesClassical
PSEAutocorrelationfunctionPSDFouriertransformObservationsxN(n)Estimationof
signalmodel
H(z)Parameter
model
methodsPSDObservationsNx
(n)Linear
systemwith
transferfunction
H(z)White
noisew(n)
The
Time
Series
Model
of
StationaryRandom
SignalStationary
randomsequence
x(n)MA(q)
model
(all-zero
model)Suitable
for
signals
whose
power
spectrahave
vales
but
no
peaks
AR(p)
model
(all-pole
model,
most
widelyused)Suitable
for
signals
whose
power
spectrahave
peaks
but
no
vales,
but
be
widelyused
since
the
linear
relation
between
itsparameters
and
the
signal
autocorrelationfunctionARMA(p,q)
model
(zero-pole
model)Suitable
for
signals
whose
power
spectrahave
vales
and
peaksModel
parameters
to
be
estimatedMA(q):AR(p):ARMA(p,q):
The
Relation
between
the
AutocorrelationFunction
&
the
Model
ParametersARMA(p,q)
modelInverse
z
transformGeneralized
Yule-Walker
equations:
a
nonlinear
eqset,
but
the
equations
are
linear
when
m>q.MA(q)
modelAR
(p)
modelInitial
valutheoremYule-Walkerequation:a
linearequation
setAR
model
power
spectrum
estimation
(AR
PSE)Observations
xN(n)Estimation
ofautocorrelation
functionEstimation
of
ARmodel
parametersAR
model
estimationProperties
of
AR
PSEThe
implied
autocorrelation
function
extensiWith
the
p+1
samples
of
autocorrelation
functio(ACF)
estimationThe
AR
model
parameter
estimation
is
obtainedby
solving
the
Yule-Walker
equation
(m=0,1,…,pFor
m>p,
thecan
be
extrapolated
fromthose
ACF
estimations
of
m≤p
byi.e.,
extrapolating
fromtoMESEKnown
ACF
estimationMaximum
entropyextrapolationUnknown
ACFestimationACFs
withmaximumuncertaintyMESE
of
zero-mean
Gaussian
random
sequencePDF
of
N-dimension
Gaussian
random
sequenceandand
so
on.The
equivalence
between
the
AR
PSE
and
theMESE
of
Gaussian
random
sequenceAR
PSE
for
p=N:MESE
of
Gaussian
random
sequenceFor
Gaussian
random
sequenceMaximum
entropyextrapolationAR
PSE
impliedextrapolation=MESEAR
PSE=There
are
no
poles
of
its
AR
modeloutside
the
unit
circle,
elseThe
stability
of
AR
modelStationary
random
sequence
x(n)The
AR
model
of
stationary
randomsequence
is
stable
(minimum
phase
model)
The
relationship
between
the
AR
PSE
and
thelinear
predictionOne-step
pure
linear
optimal
prediction
filterA
one-step
pure
linear
optimal
prediction
filtethe
solution
of
the
Yule-Walker
equation:AR(p)
modelThe
AR(p)
parameters
could
be
obtained
asthe
coefficients
that
minimized
the
predictionerror
power
of
a
p-th
order
linear
predictor.Methods
of
AR
PSE
(Solutions
of
Y-K
Equation)Levinson-Durbin
recursive
algorithmp
order
AR
model
equationp+1
order
AR
model
equationLetLetExpanded
equationPreparative
equationIfTheni.e.The
predictive
erroris
reduced
graduallyas
p
increases.
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 創(chuàng)業(yè)協(xié)議合同范本
- 制定窗簾合同范本
- 寫國(guó)際合同范例范例
- 農(nóng)村水暖安裝合同范本
- 一防水合同范本
- 代理裝修出租合同范本
- 出租道具租賃合同范本
- 代理廚具用品合同范本
- 2025-2030年古鎮(zhèn)街景仿真套件行業(yè)跨境出海戰(zhàn)略研究報(bào)告
- 2025-2030年攀巖裝備套裝行業(yè)跨境出海戰(zhàn)略研究報(bào)告
- 源代碼審計(jì)報(bào)告模板
- 施工組織設(shè)計(jì)模板
- 含碘對(duì)比劑靜脈外滲護(hù)理管理實(shí)踐指南
- 萃取技術(shù) 多級(jí)逆流萃取
- 部編版小學(xué)五年級(jí)語(yǔ)文教材培訓(xùn)課件【部編】
- 盆景造型經(jīng)驗(yàn)
- 能力不足方面存在的問(wèn)題及整改措施【9篇】
- 悟真篇-薛道光注
- 重大危險(xiǎn)源公示牌(完整)-2
- 物理學(xué)史中國(guó)古代物理學(xué)
- 初一英語(yǔ)英語(yǔ)閱讀理解專項(xiàng)訓(xùn)練15篇
評(píng)論
0/150
提交評(píng)論