版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2.2.1直線與平面平行的判定普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書
數(shù)學(xué)②
(必修)2.2.1直線與平面平行的判定(1)直線在平面內(nèi)-----有無數(shù)個(gè)公共點(diǎn)如圖:(2)直線在平面外:①直線a和面α相交:如圖:
②直線a和面α平行:
a∥α如圖:.Aaaaaaa復(fù)習(xí):直線與平面的位置關(guān)系有公共點(diǎn)無公共點(diǎn)動手做做看將課本的一邊AB緊靠桌面,并繞AB轉(zhuǎn)動,觀察AB的對邊CD在各個(gè)位置時(shí),是不是都與桌面所在的平面平行?從中你能得出什么結(jié)論?ABCDCD是桌面外一條直線,AB是桌面內(nèi)一條直線,CD∥AB,則CD∥桌面直線AB、CD各有什么特點(diǎn)呢?有什么關(guān)系呢?猜想:如果平面外一條直線和這個(gè)平面內(nèi)的一條直線平行,那么這條直線和這個(gè)平面平行。探究問題,歸納結(jié)論如圖,平面外的直線
平行于平面內(nèi)的直線b。(1)這兩條直線共面嗎?(2)直線與平面相交嗎?b直線和平面平行的判定定理定理:平面外的一條直線和平面內(nèi)的一條直線平行,則該直線和這個(gè)平面平行。
bab
a∥ba
a∥
注明:1、定理三個(gè)條件缺一不可。2、簡記:線線平行,則線面平行。3、定理告訴我們:要證線面平行,得在面內(nèi)找一條線,使線線平行。感受校園生活中線面平行的例子:天花板平面感受校園生活中線面平行的例子:球場地面定理的應(yīng)用例1.如圖,空間四邊形ABCD中,E、F分別是AB,AD的中點(diǎn).求證:EF∥平面BCD.ABCDEF分析:要證明線面平行只需證明線線平行,即在平面BCD內(nèi)找一條直線平行于EF,由已知的條件怎樣找這條直線?證明:連結(jié)BD.∵AE=EB,AF=FD∴EF∥BD(三角形中位線性質(zhì))例1.如圖,空間四邊形ABCD中,E、F分別是AB,AD的中點(diǎn).求證:EF∥平面BCD.ABDEF定理的應(yīng)用解后反思:通過本題的解答,你可以總結(jié)出什么解題思想和方法?反思1:要證明直線與平面平行可以運(yùn)用判定定理;線線平行線面平行反思2:能夠運(yùn)用定理的條件是要滿足六個(gè)字,“面外、面內(nèi)、平行”。反思3:運(yùn)用定理的關(guān)鍵是找平行線。找平行線又經(jīng)常會用到三角形中位線定理。1.如圖,在空間四邊形ABCD中,E、F分別為AB、AD上的點(diǎn),若,則EF與平面BCD的位置關(guān)系是_____________.
EF//平面BCD變式1:ABCDEF變式2:ABCDFOE2.如圖,四棱錐A—DBCE中,O為底面正方形DBCE對角線的交點(diǎn),F為AE的中點(diǎn).求證:AB//平面DCF.(04年天津高考)分析:連結(jié)OF,可知OF為△ABE的中位線,所以得到AB//OF.∵O為正方形DBCE對角線的交點(diǎn),∴BO=OE,又AF=FE,∴AB//OF,BDFO2.如圖,四棱錐A—DBCE中,O為底面正方形DBCE對角線的交點(diǎn),F為AE的中點(diǎn).求證:AB//平面DCF.證明:連結(jié)OF,ACE變式2:D1C1B1A1DCBA如圖,長方體ABCD-A1B1C1D1中,與AA1平行的平面是___________________.鞏固練習(xí):平面BC1、平面CD1例2.如圖,四面體ABCD中,E,F(xiàn),G,H分別是AB,BC,CD,AD的中點(diǎn).BCADEFGH(3)你能說出圖中滿足線面平行位置關(guān)系的所有情況嗎?(1)E、F、G、H四點(diǎn)是否共面?(2)試判斷AC與平面EFGH的位置關(guān)系;BCADEFGH解:(1)E、F、G、H四點(diǎn)共面。∵在△ABD中,E、H分別是AB、AD的中點(diǎn).∴EH∥BD且同理GF∥BD且EH∥GF且EH=GF∴E、F、G、H四點(diǎn)共面。(2)AC∥平面EFGHBCADEFGH(3)由EF∥HG∥AC,得EF∥平面ACDAC∥平面EFGHHG∥平面ABC由BD∥EH∥FG,得BD∥平面EFGHEH∥平面BCDFG∥平面ABD1.線面平行,通??梢赞D(zhuǎn)化為線線平行來處理.反思~領(lǐng)悟:2.尋找平行直線可以通過三角形的中位線、梯形的中位線、平行線的判定等來完成。3、證明的書寫三個(gè)條件“內(nèi)”、“外”、“平行”,缺一不可。例3、兩個(gè)全等的正方形ABCD和ABEF所在平面相交于AB,M∈AC,N∈FB,且AM=FN,求證:MN∥平面BCE。PQG分析:只要在平面BEC內(nèi)找到一條直線與MN平行思路1:思路2:證法一:作MP∥AB交BC于P,NQ∥AB交BE于Q
又由題可知,AM=FN,AC=BF,AB=EF即四邊形MNQP為平行四邊形平面BCE,平面BCE,平面BCE。PQG證法二:連接AN并延長交BE的延長線于點(diǎn)G,連CG,平面BCE,平面BCE,平面BCE。如圖,在正方體ABCD——A1B1C1D1中,E、F分別是棱BC與C1D1的中點(diǎn)。求證:EF//平面BDD1B1.MNM如圖,已知在三棱柱ABC——A1B1C1中,D是AC的中點(diǎn)。求證:AB1//平面DBC1P2.應(yīng)用判定定理判定線面平行時(shí)應(yīng)注意六個(gè)字:(1)面外,(2)面內(nèi),(3)平行。小結(jié):1.直線與平面平行的判定:(1)運(yùn)用定義;(2)運(yùn)用判定定理:線線平行線面平行3.應(yīng)用判定定理判定線面平行的關(guān)鍵是找平行線方法一:三角形的中位線定理;方法二:平行四邊形的平行關(guān)系。思考:設(shè)直線a,b為異面直線,經(jīng)過直線a可作幾個(gè)平面與直線b平行?過a,b外一點(diǎn)P可作幾個(gè)平面與直線a,b都平行?baababpp已知:
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024版腳手架搭建工程勞務(wù)協(xié)議模板一
- 2025年華東師大版一年級語文下冊階段測試試卷
- 2025年蘇人新版選擇性必修3地理上冊階段測試試卷
- 2025年浙科版選修1生物上冊階段測試試卷
- 2025年新世紀(jì)版五年級英語下冊月考試卷
- 2025年滬教版九年級物理下冊階段測試試卷
- 2025年度藝術(shù)品寄售合作合同模板3篇
- 2025年牛津上海版二年級語文上冊月考試卷
- 二零二五年度糧食產(chǎn)業(yè)鏈金融服務(wù)合同范本2篇
- 學(xué)生創(chuàng)新能力的培養(yǎng)與綜合評價(jià)體系的構(gòu)建
- 陜西省西安市高新一中2024-2025學(xué)年九年級上學(xué)期綜合素養(yǎng)評價(jià)(三)化學(xué)試卷(含答案)
- 繼電保護(hù)多選試題庫與參考答案
- 2024版健康醫(yī)療服務(wù)機(jī)構(gòu)合作協(xié)議范本3篇
- 公務(wù)車輛定點(diǎn)加油服務(wù)投標(biāo)文件(技術(shù)方案)
- DB21∕T 3240-2020 芹菜農(nóng)藥安全使用生產(chǎn)技術(shù)規(guī)程
- 科研辦公樓施工組織設(shè)計(jì)
- 向電網(wǎng)申請光伏容量的申請書
- 1-27屆希望杯數(shù)學(xué)競賽初一試題及答案
- 2024-2030年中國硫磺行業(yè)供需形勢及投資可行性分析報(bào)告版
- 傳統(tǒng)與現(xiàn)代結(jié)合:《剪窗花》2024年教學(xué)課件
- 冷凍設(shè)備租賃合同
評論
0/150
提交評論