版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
排列組合常見的20種解題策略基本原理組合排列排列數(shù)公式組合數(shù)公式組合數(shù)性質(zhì)應(yīng)用問題
知識(shí)結(jié)構(gòu)網(wǎng)絡(luò)圖:
名稱內(nèi)容分類原理分步原理定義相同點(diǎn)不同點(diǎn)兩個(gè)原理的區(qū)別與聯(lián)系:做一件事或完成一項(xiàng)工作的方法數(shù)直接(分類)完成間接(分步驟)完成做一件事,完成它可以有n類辦法,第一類辦法中有m1種不同的方法,第二類辦法中有m2種不同的方法…,第n類辦法中有mn種不同的方法,那么完成這件事共有
N=m1+m2+m3+…mn
種不同的方法做一件事,完成它可以有n個(gè)步驟,做第一步中有m1種不同的方法,做第二步中有m2種不同的方法…,做第n步中有mn種不同的方法,那么完成這件事共有
N=m1·m2·m3·…·mn
種不同的方法.排列和組合的區(qū)別和聯(lián)系:名稱排列組合定義種數(shù)符號(hào)計(jì)算公式關(guān)系性質(zhì)
,從n個(gè)不同元素中取出m個(gè)元素,按一定的順序排成一列從n個(gè)不同元素中取出m個(gè)元素,把它并成一組所有排列的的個(gè)數(shù)所有組合的個(gè)數(shù)一、把握分類原理、分步原理是基礎(chǔ)例1如圖,某電子器件是由三個(gè)電阻組成的回路,其中有6個(gè)焊接點(diǎn)A,B,C,D,E,F(xiàn),如果某個(gè)焊接點(diǎn)脫落,整個(gè)電路就會(huì)不通?,F(xiàn)發(fā)現(xiàn)電路不通了,那么焊接點(diǎn)脫落的可能性共有()63種(B)64種(C)6種(D)36種分析:由加法原理可知分步處理如何?練習(xí)
在今年國(guó)家公務(wù)員錄用中,某市農(nóng)業(yè)局準(zhǔn)備錄用文秘人員二名,農(nóng)業(yè)企業(yè)管理人員和農(nóng)業(yè)法制管理人員各一名,報(bào)考農(nóng)業(yè)局公務(wù)人員的考生有10人,則可能出現(xiàn)的錄用情況有____種(用數(shù)字作答)。解法1:解法2:二、注意區(qū)別“恰好”與“至少”例2從6雙不同顏色的手套中任取4只,其中恰好有一雙同色的手套的不同取法共有()
(A)480種(B)240種(C)180種(D)120種小結(jié):“恰好有一個(gè)”是“只有一個(gè)”的意思?!爸辽儆幸粋€(gè)”則是“有一個(gè)或一個(gè)以上”,可用分類討論法求解,它也是“沒有一個(gè)”的反面,故可用“排除法”。解:練習(xí)
從6雙不同顏色的手套中任取4只,其中至少有一雙同色手套的不同取法共有____種解:直接法和間接法看具體情況選擇解決排列組合綜合性問題的一般過程如下:2.怎樣做才能完成所要做的事,即采取分步還是分類,或是分步與分類同時(shí)進(jìn)行,確定分多少步及多少類。3.確定每一步或每一類是排列問題(有序)還是組合(無序)問題,元素總數(shù)是多少及取出多少個(gè)元素.※解決排列組合綜合性問題,往往類與步交叉,因此必須掌握一些常用的解題策略例3.由0,1,2,3,4,5可以組成多少個(gè)沒有重復(fù)數(shù)字五位奇數(shù).
解:由于末位和首位有特殊要求,應(yīng)該優(yōu)先安排,以免不合要求的元素占了這兩個(gè)位置先排末位共有___
然后排首位共有___最后排其它位置共有___由分步計(jì)數(shù)原理得=288位置分析法和元素分析法是解決排列組合問題最常用也是最基本的方法,若以元素分析為主,需先安排特殊元素,再處理其它元素.若以位置分析為主,需先滿足特殊位置的要求,再處理其它位置。若有多個(gè)約束條件,往往是考慮一個(gè)約束條件的同時(shí)還要兼顧其它條件練習(xí):1.將5列車停在5條不同的軌道上,其中a列車不停在第一軌道上,b列車不停在第二軌道上,那么不同的停放方法有()(A)120種(B)96種(C)78種(D)72種解:2.從7盆不同的盆花中選出5盆擺放在主席臺(tái)前,其中有兩盆花不宜擺放在正中間,則一共有_____種不同的擺放方法(用數(shù)字作答)。解:例4.7人站成一排,其中甲乙相鄰且丙丁相鄰,共有多少種不同的排法.甲乙丙丁由分步計(jì)數(shù)原理可得共有種不同的排法=480解:可先將甲乙兩元素捆綁成整體并看成一個(gè)復(fù)合元素,同時(shí)丙丁也看成一個(gè)復(fù)合元素,再與其它元素進(jìn)行排列,同時(shí)對(duì)相鄰元素內(nèi)部進(jìn)行自排。要求某幾個(gè)元素必須排在一起的問題,可以用為一個(gè)元素,再與其它元素一起作排列,同時(shí)要注意合并元素內(nèi)部也必須排列.練習(xí):1.甲、乙、丙、丁、戊5名同學(xué)站成一排參加文藝匯演,若甲和乙相鄰,丙不站在兩端,則不同的排列方式共有(
)A.12種 B.24種 C.36種 D.48種
2.某個(gè)單位安排7位員工在“五·一”假期中1日至7日值班,每天安排1人值班,且每人值班1天,若7位員工中的甲、乙排在相鄰的兩天,丙不排在5月1日,丁不排在5月7日,則不同的安排方案共有(
)A.504種 B.960種 C.1008種 D.1200種
例5.一個(gè)晚會(huì)的節(jié)目有4個(gè)舞蹈,2個(gè)相聲,3個(gè)獨(dú)唱,舞蹈節(jié)目不能連續(xù)出場(chǎng),則節(jié)目的出場(chǎng)順序有多少種?解:分兩步進(jìn)行第一步排2個(gè)相聲和3個(gè)獨(dú)唱共有
種,第二步將4舞蹈插入第一步排好的6個(gè)元素中間包含首尾兩個(gè)空位共有種
不同的方法
由分步計(jì)數(shù)原理,節(jié)目的不同順序共有
種相相獨(dú)獨(dú)獨(dú)元素相離問題可先把沒有位置要求的元素進(jìn)行排隊(duì)再把不相鄰元素插入中間和兩端練習(xí):1.甲、乙、丙、丁、戊五人排成一排,甲和乙不相鄰,排法種數(shù)為()A.12 B.36 C.48 D.72
2.五聲音階是中國(guó)古樂基本音階,故有成語“五音不全”,中國(guó)古樂中的五聲音階依次為:宮、商、角、徵、羽,若把這五個(gè)音階全用上,排成一個(gè)五個(gè)音階的音序,且要求宮、羽兩音階不相鄰且在角音階的同側(cè),則可排成不同的音序種數(shù)為(
)A.72 B.28 C.24 D.32
例6.7人排隊(duì),其中甲乙丙3人順序一定共有多少不同的排法解:(倍縮法)對(duì)于某幾個(gè)元素順序一定的排列問題,可先把這幾個(gè)元素與其他元素一起進(jìn)行排列,然后用總排列數(shù)除以這幾個(gè)元素之間的全排列數(shù),則共有不同排法種數(shù)是:
(空位法)設(shè)想有7把椅子讓除甲乙丙以外的四人就坐共有
種方法,其余的三個(gè)位置甲乙丙共有
種坐法,則共有
種方法
1思考:可以先讓甲乙丙就坐嗎?(插入法)先排甲乙丙三個(gè)人,共有1種排法,再把其余4四人依次插入共有
方法4*5*6*7定序問題可以用倍縮法,還可轉(zhuǎn)化為占位插空模型處理練習(xí)題10人身高各不相等,排成前后排,每排5人,要求從左至右身高逐漸增加,共有多少排法?
2.花燈,又名“彩燈”“燈籠”,是中國(guó)傳統(tǒng)農(nóng)業(yè)時(shí)代的文化產(chǎn)物,兼具生活功能與藝術(shù)特色.如圖,現(xiàn)有懸掛著的6盞不同的花燈需要取下,每次取1盞,則不同取法總數(shù)為_________
例7.把6名實(shí)習(xí)生分配到7個(gè)車間實(shí)習(xí),共有多少種不同的分法解:完成此事共分六步:把第一名實(shí)習(xí)生分配到車間有
種分法.7把第二名實(shí)習(xí)生分配到車間也有7種分法,依此類推,由分步計(jì)數(shù)原理共有
種不同的排法允許重復(fù)的排列問題的特點(diǎn)是以元素為研究對(duì)象,元素不受位置的約束,可以逐一安排各個(gè)元素的位置,一般地n不同的元素沒有限制地安排在m個(gè)位置上的排列數(shù)為種nm1.某班新年聯(lián)歡會(huì)原定的5個(gè)節(jié)目已排成節(jié)目單,開演前又增加了兩個(gè)新節(jié)目.如果將這兩個(gè)節(jié)目插入原節(jié)目單中,那么不同插法的種數(shù)為()422.某8層大樓一樓電梯上來8名乘客人,他們到各自的一層下電梯,下電梯的方法()練習(xí)題例8.5人圍桌而坐,共有多少種坐法?
解:圍桌而坐與坐成一排的不同點(diǎn)在于,坐成圓形沒有首尾之分,所以固定一人A并從此位置把圓形展成直線其余4人共有____
種排法即
ABCEDDAABCE(5-1)!一般地,n個(gè)不同元素作圓形排列,共有(n-1)!種排法.如果從n個(gè)不同元素中取出m個(gè)元素作圓形排列共有練習(xí)題6顆顏色不同的鉆石,可穿成幾種鉆石圈60設(shè)六顆顏色不同的鉆石為a,b,cd,e,f.與圍桌而坐情形不同點(diǎn)是a,b,c,d,e,f與f,e,d,c,b,a在圍桌而坐中是兩種排法,即在鉆石圈中只是一種排法,即把鉆石圈翻到一邊,所求數(shù)為:[(6-1)!]/2=60要考慮“鉆石圈”可以翻轉(zhuǎn)的特點(diǎn)例9.8人排成前后兩排,每排4人,其中甲乙在前排,丁在后排,共有多少排法解:8人排前后兩排,相當(dāng)于8人坐8把椅子,可以把椅子排成一排.先在前4個(gè)位置排甲乙兩個(gè)特殊元素有____種,再排后4個(gè)位置上的特殊元素有_____種,其余的5人在5個(gè)位置上任意排列有____種,則共有_________種.前排后排一般地,元素分成多排的排列問題,可歸結(jié)為一排考慮,再分段研究.有兩排座位,前排11個(gè)座位,后排12個(gè)座位,現(xiàn)安排2人就座規(guī)定前排中間的3個(gè)座位不能坐,并且這2人不左右相鄰,那么不同排法的種數(shù)是______346練習(xí)題甲乙都在前排:1、都在左面4個(gè)座位=6種
2、都在右面4個(gè)座位同上,6種
3、分列在中間3個(gè)的左右=32種一共6+6+32=44種
甲乙都在后排:
A(22)*(10+9+8+7+6+5+4+3+2+1)=110種
甲乙分列在前后兩排A(22)*12*8=192種
一共44+110+192=346種
例10.有5個(gè)不同的小球,裝入4個(gè)不同的盒內(nèi),每盒至少裝一個(gè)球,共有多少不同的裝法.解:第一步從5個(gè)球中選出2個(gè)組成復(fù)合元共有__種方法.再把5個(gè)元素(包含一個(gè)復(fù)合元素)裝入4個(gè)不同的盒內(nèi)有_____種方法.根據(jù)分步計(jì)數(shù)原理裝球的方法共有_____解決排列組合混合問題,先選后排是最基本的指導(dǎo)思想.此法與相鄰元素捆綁策略相似嗎?練習(xí)題一個(gè)班有6名戰(zhàn)士,其中正副班長(zhǎng)各1人現(xiàn)從中選4人完成四種不同的任務(wù),每人完成一種任務(wù),且正副班長(zhǎng)有且只有1人參加,則不同的選法有________種192例11.用1,2,3,4,5組成沒有重復(fù)數(shù)字的五位數(shù)
其中恰有兩個(gè)偶數(shù)夾1,5這兩個(gè)奇數(shù)之間,這樣的五位數(shù)有多少個(gè)?解:把1,5,2,4當(dāng)作一個(gè)小集團(tuán)與3排隊(duì)共有____種排法,再排小集團(tuán)內(nèi)部共有_______種排法,由分步計(jì)數(shù)原理共有_______種排法.31524小集團(tuán)小集團(tuán)排列問題中,先整體后局部,再結(jié)合其它策略進(jìn)行處理。1.計(jì)劃展出10幅不同的畫,其中1幅水彩畫,4幅油畫,5幅國(guó)畫,排成一行陳列,要求同一
品種的必須連在一起,并且水彩畫不在兩端,那么共有陳列方式的種數(shù)為_______2.5男生和5女生站成一排照像,男生相鄰,女
生也相鄰的排法有_______種例12.有10個(gè)運(yùn)動(dòng)員名額,在分給7個(gè)班,每
班至少一個(gè),有多少種分配方案?
解:因?yàn)?0個(gè)名額沒有差別,把它們排成一排。相鄰名額之間形成9個(gè)空隙。在9個(gè)空檔中選6個(gè)位置插個(gè)隔板,可把名額分成7份,對(duì)應(yīng)地分給7個(gè)班級(jí),每一種插板方法對(duì)應(yīng)一種分法共有___________種分法。一班二班三班四班五班六班七班將n個(gè)相同的元素分成m份(n,m為正整數(shù)),每份至少一個(gè)元素,可以用m-1塊隔板,插入n個(gè)元素排成一排的n-1個(gè)空隙中,所有分法數(shù)為
例13.從0,1,2,3,4,5,6,7,8,9這十個(gè)數(shù)字中取出三個(gè)數(shù),使其和為不小于10的偶數(shù),不同的取法有多少種?解:這問題中如果直接求不小于10的偶數(shù)很困難,可用總體淘汰法。這十個(gè)數(shù)字中有5個(gè)偶數(shù)5個(gè)奇數(shù),所取的三個(gè)數(shù)含有3個(gè)偶數(shù)的取法有____,只含有1個(gè)偶數(shù)的取法有_____,和為偶數(shù)的取法共有_________再淘汰和小于10的偶數(shù)共___________符合條件的取法共有___________9013015017023025027041045043+-9+有些排列組合問題,正面直接考慮比較復(fù)雜,而它的反面往往比較簡(jiǎn)捷,可以先求出它的反面,再?gòu)恼w中淘汰.練習(xí):1,甲?乙?丙?丁四位同學(xué)決定去黃鶴樓?東湖?漢口江灘游玩,每人只能去一個(gè)地方,漢口江灘一定要有人去,則不同游覽方案的種數(shù)為(
)A.65 B.73 C.70 D.60.
2.從正360邊形的頂點(diǎn)中取若干個(gè),依次連接,構(gòu)成的正多邊形的個(gè)數(shù)為(
)A.360 B.630 C.1170 D.840
例14.6本不同的書平均分成3堆,每堆2本共有多少分法?解:分三步取書得種方法,但這里出現(xiàn)重復(fù)計(jì)數(shù)的現(xiàn)象,不妨記6本書為ABCDEF
若第一步取AB,第二步取CD,第三步取EF
該分法記為(AB,CD,EF),則中還有(AB,EF,CD),(CD,AB,EF),(CD,EF,AB)(EF,CD,AB),(EF,AB,CD)共有種取法,而這些分法僅是(AB,CD,EF)一種分法,故共
有種分法。平均分成的組,不管它們的順序如何,都是一種情況,所以分組后要一定要除以(n為均分的組數(shù))避免重復(fù)計(jì)數(shù)。(1)將四個(gè)小球分成兩組,每組兩個(gè),有多少分法?3種分組問題解釋說明(2)將四個(gè)小球分給兩人,每人兩個(gè),有多少分法?甲甲乙乙6種(3)將四個(gè)小球分成兩組,一組三個(gè),一組一個(gè),有多少分法?4種(4)將四個(gè)小球分給兩人,一人三個(gè),一人一個(gè),有多少分法?甲乙甲乙8種分組問題注意是否均勻有無組別有組別問題若分成的m組是有組別的,只需在原來的分組基礎(chǔ)上再
小結(jié):練習(xí)1說明了非平均分配、平均分配以及部分平均分配問題。
1.非平均分配問題中,沒有給出組名與給出組名是一樣的,可以直接分步求;給出了組名而沒指明哪組是幾個(gè),可以在沒有給出組名(或給出組名但不指明各組多少個(gè))種數(shù)的基礎(chǔ)上乘以組數(shù)的全排列數(shù)。
2.平均分配問題中,給出組名的分步求;若沒給出組名的,一定要在給出組名的基礎(chǔ)上除以組數(shù)的全排列數(shù)。
3.部分平均分配問題中,先考慮不平均分配,剩下的就是平均分配。這樣分配問題就解決了。結(jié)論:給出組名(非平均中未指明各組個(gè)數(shù))的要在未給出組名的種數(shù)的基礎(chǔ)上,乘以組數(shù)的階乘。
2.將12個(gè)不同的物體分成3組,每組4個(gè),則不同的分法種數(shù)為(
).A.34650 B.5940 C.495 D.5775
十五.合理分類與分步策略例13.在一次演唱會(huì)上共10名演員,其中8人能能唱歌,5人會(huì)跳舞,現(xiàn)要演出一個(gè)2人唱歌2人伴舞的節(jié)目,有多少選派方法?解:10演員中有5人只會(huì)唱歌,2人只會(huì)跳舞3人為全能演員。以只會(huì)唱歌的5人是否選上唱歌人員為標(biāo)準(zhǔn)進(jìn)行研究只會(huì)唱的5人中沒有人選上唱歌人員共有____種,只會(huì)唱的5人中只有1人選上唱歌人員________種,只會(huì)唱的5人中只有2人選上唱歌人員有____種,由分類計(jì)數(shù)原理共有______________________種。++本題還有如下分類標(biāo)準(zhǔn):*以3個(gè)全能演員是否選上唱歌人員為標(biāo)準(zhǔn)*以3個(gè)全能演員是否選上跳舞人員為標(biāo)準(zhǔn)*以只會(huì)跳舞的2人是否選上跳舞人員為標(biāo)準(zhǔn)都可經(jīng)得到正確結(jié)果解含有約束條件的排列組合問題,可按元素的性質(zhì)進(jìn)行分類,按事件發(fā)生的連續(xù)過程分步,做到標(biāo)準(zhǔn)明確。分步層次清楚,不重不漏,分類標(biāo)準(zhǔn)一旦確定要貫穿于解題過程的始終。1.從4名男生和3名女生中選出4人參加某個(gè)座談會(huì),若這4人中必須既有男生又有女生,則不同的選法共有_______34
練習(xí)題2.3成人2小孩乘船游玩,1號(hào)船最多乘3人,2號(hào)船最多乘2人,3號(hào)船只能乘1人,他們?nèi)芜x2只船或3只船,但小孩不能單獨(dú)乘一只船,這3人共有多少乘船方法.27例14.馬路上有編號(hào)為1,2,3,4,5,6,7,8,9的九只路燈,現(xiàn)要關(guān)掉其中的3盞,但不能關(guān)
掉相鄰的2盞或3盞,也不能關(guān)掉兩端的2盞,求滿足條件的關(guān)燈方法有多少種?解:把此問題當(dāng)作一個(gè)排隊(duì)模型在6盞亮燈的5個(gè)空隙中插入3個(gè)不亮的燈有________種一些不易理解的排列組合題如果能轉(zhuǎn)化為非常熟悉的模型,如占位填空模型,排隊(duì)模型,裝盒模型等,可使問題直觀解決練習(xí)題某排共有10個(gè)座位,若4人就坐,每人左右兩邊都有空位,那么不同的坐法有多少種?120例17.設(shè)有編號(hào)1,2,3,4,5的五個(gè)球和編號(hào)1,2,3,4,5的五個(gè)盒子,現(xiàn)將5個(gè)球投入這五個(gè)盒子內(nèi),要求每個(gè)盒子放一個(gè)球,并且恰好有兩個(gè)球的編號(hào)與盒子的編號(hào)相同,.有多少投法
解:從5個(gè)球中取出2個(gè)與盒子對(duì)號(hào)有_____種
還剩下3球3盒序號(hào)不能對(duì)應(yīng),利用實(shí)際操作法,如果剩下3,4,5號(hào)球,3,4,5號(hào)盒3號(hào)球裝4號(hào)盒時(shí),則4,5號(hào)球有只有1種裝法3號(hào)盒4號(hào)盒5號(hào)盒345十7.實(shí)際操作窮舉策略例17.設(shè)有編號(hào)1,2,3,4,5的五個(gè)球和編號(hào)1,2,3,4,5的五個(gè)盒子,現(xiàn)將5個(gè)球投入這五個(gè)盒子內(nèi),要求每個(gè)盒子放一個(gè)球,并且恰好有兩個(gè)球的編號(hào)與盒子的編號(hào)相同,.有多少投法
解:從5個(gè)球中取出2個(gè)與盒子對(duì)號(hào)有_____種
還剩下3球3盒序號(hào)不能對(duì)應(yīng),利用實(shí)際操作法,如果剩下3,4,5號(hào)球,3,4,5號(hào)盒3號(hào)球裝4號(hào)盒時(shí),則4,5號(hào)球有只有1種裝法,同理3號(hào)球裝5號(hào)盒時(shí),4,5號(hào)球有也只有1種裝法,由分步計(jì)數(shù)原理有2種
2.形如45132這樣的數(shù)稱為“波浪數(shù)”,即十位上的數(shù)字,千位上的數(shù)字均比與它們各自相鄰的數(shù)字大,則由1,2,3,4,5可組成數(shù)字不重復(fù)的五位“波浪數(shù)”的個(gè)數(shù)為()A.20 B.18 C.16 D.11
十八.分解與合成策略例18.30030能被多少個(gè)不同的偶數(shù)整除分析:先把30030分解成質(zhì)因數(shù)的乘積形式30030=2×3×5×7×11×13依題
意可知偶因數(shù)必先取2,再?gòu)钠溆?個(gè)因數(shù)中任取若干個(gè)組成乘積,所有的偶因數(shù)為:直線解:我們先從8個(gè)頂點(diǎn)中任取4個(gè)頂點(diǎn)構(gòu)成四體共有體共__________每個(gè)四面體有___對(duì)異面直線,正方體中的8個(gè)頂點(diǎn)可連成____________對(duì)異面直線66×58=174分解與合成策略是排列組合問題的一種最基本的解題策略,把一個(gè)復(fù)雜問題分解成幾個(gè)小問題逐一解決,然后依據(jù)問題分解后的結(jié)構(gòu),用分類計(jì)數(shù)原理和分步計(jì)數(shù)原理將問題合成,從而得到問題的答案,每個(gè)比較復(fù)雜的問題都要用到這種解題策略對(duì)于條件比較復(fù)雜的排列組合問題,不易用公式進(jìn)行運(yùn)算,往往利用窮舉法或畫出樹狀圖會(huì)收到意想不到的結(jié)果練習(xí)題同一寢室4人,每人寫一張賀年卡集中起來,然后每人各拿一張別人的賀年卡,則四張賀年卡不同的分配方式有多少種?(9)2.給圖中區(qū)域涂色,要求相鄰區(qū)域不同色,現(xiàn)有4種可選顏色,則不同的著色方法有____種2134572例19.25人排成5×5方隊(duì),現(xiàn)從中選3人,要求3人不在同一行也不在同一列,不同的
選法有多少種?解:將這個(gè)問題退化成9人排成3×3方隊(duì),現(xiàn)從中選3人,要求3人不在同一行也不在同一列,有多少選法.這樣每行必有1人從其中的一行中選取1人后,把這人所在的行列都劃掉,從5×5方隊(duì)中選取3行3列有_____選法所以從5×5方隊(duì)選不在同一行也不在同一列的3人有__________________選法。處理復(fù)雜的排列組合問題時(shí)可以把一個(gè)問題退化成一個(gè)簡(jiǎn)要的問題,通過解決這個(gè)簡(jiǎn)要的問題的解決找到解題方法,從而進(jìn)下一步解決原來的問題如此繼續(xù)下去.從3×3方隊(duì)中選3人的方法有___________種。再?gòu)?×5方隊(duì)選出3×3方隊(duì)便可解決問題某城市的街區(qū)由12個(gè)全等的矩形區(qū)組成其中實(shí)線表示馬路,從A走到B的最短路徑有多少種?練習(xí)題BA解:按地圖A,B,C,D四個(gè)區(qū)域依次分四步完成:第一步,m1=3種,第二步,m2=2種,第三步,m3=1種,第四步,m4=1種,根據(jù)乘法原理,得到不同的涂色方案種數(shù)共有N=3×2×1×1=6種.問題:如圖,要給地圖A、B、C、D四個(gè)區(qū)域分別涂上3種不同顏色中的某一種,允許同一種顏色使用多次,但相鄰區(qū)域必須涂不同的顏色,不同的涂色方案有多少種?染色問題
一個(gè)圓被分成了2、3、4、5、6個(gè)扇形區(qū)域,可選四種不同顏色涂色,要求相鄰?fù)坎煌伾?,分別有多少種不同的涂色方法?(圖B)(圖C)(圖D)(圖E)(圖A)1.觀察分析(1)圖A,按要求顯然有
4×3=12種涂色方案.(3)圖C,用間接法求解,假設(shè)4區(qū)域涂法依次為4、3、3、3種,則需減去首尾兩區(qū)域涂相同顏色的情形,故有4×33-24=84種涂色方案.(2)圖B,顯然有
4×3×2=4×32-12=24
種涂色方案.
(4)對(duì)圖D,類似于圖C的解法,假設(shè)5個(gè)區(qū)域涂法依次為4、3、3、3、3種,則需減去首尾兩區(qū)域涂相同顏色的情形.故有4×34-84=240種涂色方案.
(5)對(duì)圖E,類似于圖D的解法,假設(shè)6區(qū)域涂法依次為4、3、3、3、3、3種,則需減去首尾兩區(qū)域涂相同顏色的情形.(圖E)故有4×35-240=732種涂色方案.探究新知(圖D)2.猜想遞推公式探究新知a2=4×3=(3+1)×3=a3=a4=a5=a6=3.猜想歸納通項(xiàng)an
(n≥2)所以如果n個(gè)不同區(qū)域有m種顏色可供選用,那么有多少種不同的涂法?P4.歸納結(jié)論如圖,已知P是
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025版小額貸款擔(dān)保及貸款利率調(diào)整及貸款條件變更及擔(dān)保人責(zé)任合同3篇
- 二零二五年度木工耗材供應(yīng)與配送合同4篇
- 01 修辭手法題的應(yīng)對(duì)策略-高考語文一輪復(fù)習(xí)之核心考點(diǎn)解密
- 七年級(jí)道德與法治試卷
- 信用激勵(lì)措施考核試卷
- 二零二五年度鋼材行業(yè)質(zhì)量標(biāo)準(zhǔn)制定與實(shí)施合同3篇
- 二零二五年度陵園墓碑雕刻技藝傳承合同4篇
- 2025版品牌視覺設(shè)計(jì)制作合同范本2篇
- 《菜根譚名句》課件
- 2025年因擅自公開他人隱私賠償協(xié)議
- 課題申報(bào)書:GenAI賦能新質(zhì)人才培養(yǎng)的生成式學(xué)習(xí)設(shè)計(jì)研究
- 駱駝祥子-(一)-劇本
- 全國(guó)醫(yī)院數(shù)量統(tǒng)計(jì)
- 《中國(guó)香文化》課件
- 2024年醫(yī)美行業(yè)社媒平臺(tái)人群趨勢(shì)洞察報(bào)告-醫(yī)美行業(yè)觀察星秀傳媒
- 第六次全國(guó)幽門螺桿菌感染處理共識(shí)報(bào)告-
- 天津市2023-2024學(xué)年七年級(jí)上學(xué)期期末考試數(shù)學(xué)試題(含答案)
- 經(jīng)濟(jì)學(xué)的思維方式(第13版)
- 盤錦市重點(diǎn)中學(xué)2024年中考英語全真模擬試卷含答案
- 手衛(wèi)生依從性調(diào)查表
- 湖北教育出版社四年級(jí)下冊(cè)信息技術(shù)教案
評(píng)論
0/150
提交評(píng)論